
[Top] [Prev] [Next] [Bottom]

The Interface Repository

6

The Interface Repository is the component of the ORB that provides persistent storage of interface
definitions-it manages and provides access to a collection of object definitions specified in OMG IDL.

6.1 Overview
An ORB provides distributed access to a collection of objects using the objects' publicly defined
interfaces specified in OMG IDL. The Interface Repository provides for the storage, distribution, and
management of a collection of related objects' interface definitions.

For an ORB to correctly process requests, it must have access to the definitions of the objects it is
handling. Object definitions can be made available to an ORB in one of two forms:

1. By incorporating the information procedurally into stub routines (e.g., as code that maps C language
subroutines into communication protocols).

2. As objects accessed through the dynamically accessible Interface Repository (i.e., as "interface objects"
accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the Interface Repository to interpret and
handle the values provided in a request:

To provide type-checking of request signatures (whether the request was issued through the DII or
through a stub).
To assist in checking the correctness of interface inheritance graphs.
To assist in providing interoperability between different ORB implementations.

As the interface to the object definitions maintained in an Interface Repository is public, the information
maintained in the Repository can also be used by clients and services. For example, the Repository can be
used:

To manage the installation and distribution of interface definitions.
To provide components of a CASE environment (for example, an interface browser).
To provide interface information to language bindings (such as a compiler).
To provide components of end-user environments (for example, a menu bar constructor).

The complete OMG IDL specification for the Interface Repository is in Section 6.8, "OMG IDL for

1 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

Interface Repository," on page 6-41. Fragments of the specification are used throughout this chapter as
necessary.

6.2 Scope of an Interface Repository
Interface definitions are maintained in the Interface Repository as a set of objects that are accessible
through a set of OMG IDL-specified interface definitions. An interface definition contains a description of
the operations it supports, including the types of the parameters, exceptions it may raise, and context
information it may use.

In addition, the interface repository stores constant values, which might be used in other interface
definitions or might simply be defined for programmer convenience. And it stores typecodes, which are
values that describe a type in structural terms.

The Interface Repository uses modules as a way to group interfaces and to navigate through those groups
by name. Modules can contain constants, typedefs, exceptions, interface definitions, and other modules.
Modules may, for example, correspond to the organization of OMG IDL definitions. They may also be
used to represent organizations defined for administration or other purposes.

The Interface Repository is a set of objects that represent the information in it. There are operations that
operate on this apparent object structure. It is an implementation's choice whether these objects exist
persistently or are created when referenced in an operation on the repository. There are also operations
that extract information in an efficient form, obtaining a block of information that describes a whole
interface or a whole operation.

An ORB may have access to multiple Interface Repositories. This may occur because two ORBs have
different requirements for the implementation of the Interface Repository, because an object
implementation (such as an OODB) prefers to provide its own type information, or because it is desired
to have different additional information stored in different repositories. The use of typecodes and
repository identifiers is intended to allow different repositories to keep their information consistent.

As shown in FIGURE 12. on page 6-3, the same interface Doc is installed in two different repositories,
one at SoftCo, Inc., which sells Doc objects, and one at Customer, Inc., which buys Doc objects from
SoftCo. SoftCo sets the repository id for the Doc interface when it defines it. Customer might first install
the interface in its repository in a module where it could be tested before exposing it for general use.
Because it has the same repository id, even though the Doc interface is stored in a different repository
and is nested in a different module, it is known to be the same.

Meanwhile at SoftCo, someone working on a new Doc interface has given it a new repository id 456,
which allows the ORBs to distinguish it from the current product Doc interface.

2 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

FIGURE 12. Using Repository IDs to establish
correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employees cannot see the new
release of the Doc interface. However, widely used interfaces will generally be visible in most
repositories.

This Interface Repository specification defines operations for retrieving information from the repository
as well as creating definitions within it. There may be additional ways to insert information into the
repository (for example, compiling OMG IDL definitions, copying objects from one repository to
another, etc.).

A critical use of the interface repository information is for connecting ORBs together. When an object is
passed in a request from one ORB to another, it may be necessary to create a new object to represent the
passed object in the receiving ORB. This may require locating the interface information in an interface
repository in the receiving ORB. By getting the repository id from a repository in the sending ORB, it is
possible to look up the interface in a repository in the receiving ORB. To succeed, the interface for that
object must be installed in both repositories with the same repository id.

6.3 Implementation Dependencies
An implementation of an Interface Repository requires some form of persistent object store. Normally the
kind of persistent object store used determines how interface definitions are distributed and/or replicated
throughout a network domain. For example, if an Interface Repository is implemented using a filing
system to provide object storage, there may be only a single copy of a set of interfaces maintained on a
single machine. Alternatively, if an OODB is used to provide object storage, multiple copies of interface
definitions may be maintained each of which is distributed across several machines to provide both
high-availability and load-balancing.

The kind of object store used may determine the scope of interface definitions provided by an
implementation of the Interface Repository. For example, it may determine whether each user has a local
copy of a set of interfaces or if there is one copy per community of users. The object store may also
determine whether or not all clients of an interface set see exactly the same set at any given point in time
or whether latency in distributing copies of the set gives different users different views of the set at any
point in time.

An implementation of the Interface Repository is also dependent on the security mechanism in use. The
security mechanism (usually operating in conjunction with the object store) determines the nature and
granularity of access controls available to constrain access to objects in the repository.

6.3.1 Managing Interface Repositories

3 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

Interface Repositories contain the information necessary to allow programs to determine and manipulate
the type information at runtime. Programs may attempt to access the interface repository at any time by
using the get_interface operation on the object reference. Once information has been installed in the
repository, programs, stubs, and objects may depend on it. Updates to the repository must be done with
care to avoid disrupting the environment. A variety of techniques are available to help do so.

A coherent repository is one whose contents can be expressed as a valid collection of OMG IDL
definitions. For example, all inherited interfaces exist, there are no duplicate operation names or other
name collisions, all parameters have known types, and so forth. As information is added to the repository,
it is possible that it may pass through incoherent states. Media failures or communication errors might
also cause it to appear incoherent. In general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a shared database. It is likely
that the same interface information will be stored in multiple repositories in a computing environment.
Using repository IDs, the repositories can establish the identity of the interfaces and other information
across the repositories.

Multiple repositories might also be used to insulate production environments from development activity.
Developers might be permitted to make arbitrary updates to their repositories, but administrators may
control updates to widely used repositories. Some repository implementations might permit sharing of
information, for example, several developers' repositories may refer to parts of a shared repository. Other
repository implementations might instead copy the common information. In any case, the result should be
a repository facility that creates the impression of a single, coherent repository.

The interface repository itself cannot make all repositories have coherent information, and it may be
possible to enter information that does not make sense. The repository will report errors that it detects,
e.g., defining two attributes with the same name, but might not report all errors, for example, adding an
attribute to a base interface may or may not detect a name conflict with a derived interface. Despite these
limitations, the expectation is that a combination of conventions, administrative controls, and tools that
add information to the repository will work to create a coherent view of the repository information.

Transactions and concurrency control mechanisms defined by the Object Services may be used by some
repositories when updating the repository. Those services are designed so that they can be used without
changing the operations that update the repository. For example, a repository that supports the
Transaction Service would inherit the Repository interface, which contains the update operations, as well
as the Transaction interface, which contains the transaction management operations. (For more
information about Object Services, including the Transaction and Concurrency Control Services, refer to
CORBAservices: Common Object Service Specifications.)

Often, rather than change the information, new versions will be created, allowing the old version to
continue to be valid. The new versions will have distinct repository IDs and be completely different types
as far as the repository and the ORBs are concerned. The IR provides storage for version identifiers for
named types, but does not specify any additional versioning mechanism or semantics.

6.4 Basics of the Interface Repository Interface
This section introduces some basic ideas that are important to understanding the Interface Repository.

4 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

Topics addressed in this section are:

Names and IDs
Types and TypeCodes
Interface Objects

6.4.1 Names and Identifiers

Simple names are not necessarily unique within an Interface Repository; they are always relative to an
explicit or implicit module. In this context, interface definitions are considered explicit modules.

Scoped names uniquely identify modules, interfaces, constant, typedefs, exceptions, attributes, and
operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, constants, typedefs, exceptions, attributes,
and operations. They can be used to synchronize definitions across multiple ORBs and Repositories.

6.4.2 Types and TypeCodes

The Interface Repository stores information about types that are not interfaces in a data value called a
TypeCode. From the TypeCode alone it is possible to determine the complete structure of a type. See
"TypeCodes" on page 6-33 for more information on the internal structure of TypeCodes.

6.4.3 Interface Objects

Each interface managed in an Interface Repository is maintained as a collection of interface objects:

1. Repository: the top-level module for the repository name space; it contains constants, typedefs,
exceptions, interface definitions, and modules.

2. ModuleDef: a logical grouping of interfaces; it contains constants, typedefs, exceptions, interface
definitions, and other modules.

3. InterfaceDef: an interface definition; it contains lists of constants, types, exceptions, operations, and
attributes.

4. AttributeDef: the definition of an attribute of the interface.

5. OperationDef: the definition of an operation on the interface; it contains lists of parameters and
exceptions raised by this operation.

6. TypedefDef: base interface for definitions of named types that are not interfaces.

7. ConstantDef: the definition of a named constant.

8. ExceptionDef: the definition of an exception that can be raised by an operation.

The interface specifications for each interface object lists the attributes maintained by that object (see

5 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

"Interface Repository Interfaces" on page 6-7). Many of these attributes correspond directly to OMG
IDL statements. An implementation can choose to maintain additional attributes to facilitate managing the
Repository or to record additional (proprietary) information about an interface. Implementations that
extend the IR interfaces should do so by deriving new interfaces, not by modify the standard interfaces.

The CORBA specification defines a minimal set of operations for interface objects. Additional operations
that an implementation of the Interface Repository may provide could include operations that provide for
the versioning of interfaces and for the reverse compilation of specifications (i.e., the generation of a file
containing an object's OMG IDL specification).

6.4.4 Structure and Navigation of Interface Objects

The definitions in the Interface Repository are structured as a set of objects. The objects are structured
the same way definitions are structured-some objects (definitions) "contain" other objects.

The containment relationships for the objects in the Interface Repository are shown in FIGURE 13. on
page 6-7.

FIGURE 13. Interface Repository Object Containment

There are three ways to locate an interface in the Interface Repository:

1. By obtaining an InterfaceDef object directly from the ORB.

2. By navigating through the module name space using a sequence of names.

3. By locating the InterfaceDef object that corresponds to a particular repository identifier.

Obtaining an InterfaceDef object directly is useful when an object is encountered whose type was not
known at compile time. By using the get_interface() operation on the object reference, it is possible to
retrieve the Interface Repository information about the object. That information could then be used to
perform operations on the object.

Navigating the module name space is useful when information about a particular named interface is
desired. Starting at the root module of the repository, it is possible to obtain entries by name.

Locating the InterfaceDef object by ID is useful when looking for an entry in one repository that
corresponds to another. A repository identifier must be globally unique. By using the same identifier in
two repositories, it is possible to obtain the interface identifier for an interface in one repository, and then
obtain information about that interface from another repository that may be closer or contain additional

6 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

information about the interface.

6.5 Interface Repository Interfaces
Several abstract interfaces are used as base interfaces for other objects in the IR.

A common set of operations is used to locate objects within the Interface Repository. These operations
are defined in the abstract interfaces IRObject, Container, and Contained described below. All IR
objects inherit from the IRObject interface, which provides an operation for identifying the actual type of
the object. Objects that are containers inherit navigation operations from the Container interface. Objects
that are contained by other objects inherit navigation operations from the Contained interface.

The IDLType interface is inherited by all IR objects that represent IDL types, including interfaces,
typedefs, and anonymous types. The TypedefDef interface is inherited by all named non-interface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are not instantiable.

6.5.1 Supporting Type Definitions

Several types are used throughout the IR interface definitions.

module CORBA {

typedef string Identifier;

typedef string ScopedName;

typedef string RepositoryId;

enum DefinitionKind {
dk_none, dk_all,

dk_Attribute, dk_Constant, dk_Exception, dk_Interface,

dk_Module, dk_Operation, dk_Typedef,

dk_Alias, dk_Struct, dk_Union, dk_Enum,

dk_Primitive, dk_String, dk_Sequence, dk_Array,

dk_Repository

};

};

Identifiers are the simple names that identify modules, interfaces, constants, typedefs, exceptions,
attributes, and operations. They correspond exactly to OMG IDL identifiers. An Identifier is not

7 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

necessarily unique within an entire Interface Repository; it is unique only within a particular Repository,
ModuleDef, InterfaceDef, or OperationDef.

A ScopedName is a name made up of one or more Identifiers separated by the characters "::". They
correspond to OMG IDL scoped names.

An absolute ScopedName is one that begins with "::" and unambiguously identifies a definition in a
Repository. An absolute ScopedName in a Repository corresponds to a global name in an OMG IDL
file (see Section 3.12). A relative ScopedName does not begin with "::" and must be resolved relative to
some context.

A RepositoryId is an identifier used to uniquely and globally identify a module, interface, constant,
typedef, exception, attribute or operation. As RepositoryIds are defined as strings, they can be
manipulated (e.g., copied and compared) using a language binding's string manipulation routines.

A DefinitionKind identifies the type of an IR object.

6.5.2 IRObject

The IRObject interface represents the most generic interface from which all other Interface Repository
interfaces are derived, even the Repository itself.

module CORBA {

interface IRObject {

// read interface

readonly attribute DefinitionKind def_kind;

// write interface

void destroy ();

};

};

Read Interface

The def_kind attribute identifies the type of the definition.

Write Interface

The destroy operation causes the object to cease to exist. If the object is a Container, destroy is applied
to all its contents. If the object contains an IDLType attribute for an anonymous type, that IDLType is
destroyed. If the object is currently contained in some other object, it is removed. Invoking destroy on a
Repository or on a PrimitiveDef is an error. Implementations may very in their handling of references to

8 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

an object the is being destroyed, but the Repository should not be left in an incoherent state.

6.5.3 Contained

The Contained interface is inherited by all Interface Repository interfaces that are contained by other IR
objects. All objects within the Interface Repository, except the root object (Repository) and definitions
of anonymous (ArrayDef, StringDef, and SequenceDef), and primitive types are contained by other
objects.

module CORBA {

typedef string VersionSpec;

interface Contained : IRObject {

// read/write interface

attribute RepositoryId id;

attribute Identifier name;

attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;

readonly attribute ScopedName absolute_name;

readonly attribute Repository containing_repository;

struct Description {

DefinitionKind kind;

any value;

};

Description describe ();

// write interface

void move (

in Container new_container,

in Identifier new_name,

9 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

in VersionSpec new_version

);

};

};

Read Interface

An object that is contained by another object has an id attribute that identifies it globally, and a name
attribute that identifies it uniquely within the enclosing Container object. It also has a version attribute
that distinguishes it from other versioned objects with the same name. IRs are not required to support
simultaneous containment of multiple versions of the same named object. Supporting multiple versions
most likely requires mechanism and policy not specified in this document.

Contained objects also have a defined_in attribute that identifies the Container within which they are
defined. Objects can be contained either because they are defined within the containing object (for
example, an interface is defined within a module) or because they are inherited by the containing object
(for example, an operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, the defined_in attribute identifies
the InterfaceDef from which the object is inherited.

The absolute_name attribute is an absolute ScopedName that identifies a Contained object uniquely
within its enclosing Repository. If this object's defined_in attribute references a Repository, the
absolute_name is formed by concatenating the string "::" and this object's name attribute. Otherwise, the
absolute_name is formed by concatenating the absolute_name attribute of the object referenced by this
object's defined_in attribute, the string "::", and this object's name attribute.

The containing_repository attribute identifies the Repository that is eventually reached by recursively
following the object's defined_in attribute.

The describe operation returns a structure containing information about the interface. The description
structure associated with each interface is provided below with the interface's definition. The kind of
definition described by the structure returned is provided with the returned structure. For example, if the
describe operation is invoked on an attribute object, the kind field contains dk_Attribute and the value
field contains an any, which contains the AttributeDescription structure.

Write Interface

Setting the id attribute changes the global identity of this definition. An error is returned if an object with
the specified id attribute already exists within this object's Repository.

Setting the name attribute changes the identity of this definition within its Container. An error is
returned if an object with the specified name attribute already exists within the this object's Container.
The absolute_name attribute is also updated, along with any other attributes that reflect the name of the
object. If this object is a Container, the absolute_name attribute of any objects it contains are also
updated.

10 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

The move operation atomically removes this object from its current Container, and adds it to the
Container specified by new_container, which must:

Be in the same Repository,
Be capable of containing this object's type (see FIGURE 13. on page 6-7); and
Not already contain an object with this object's name (unless multiple versions are supported by the
IR). The name attribute is changed to new_name, and the version attribute is changed to
new_version.

The defined_in and absolute_name attributes are updated to reflect the new container and name.
If this object is also a Container, the absolute_name attributes of any objects it contains are also
updated.

6.5.4 Container

The Container interface is used to form a containment hierarchy in the Interface Repository. A
Container can contain any number of objects derived from the Contained interface. All Containers,
except for Repository, are also derived from Contained.

module CORBA {

typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {

// read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (

in DefinitionKind limit_type,

in boolean exclude_inherited

);

ContainedSeq lookup_name (

in Identifier search_name,

in long levels_to_search,

in DefinitionKind limit_type,

in boolean exclude_inherited

);

11 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

struct Description {

Contained contained_object;

DefinitionKind kind;

any value;

};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limit_type,

in boolean exclude_inherited,

in long max_returned_objs

);

// write interface

ModuleDef create_module (
in RepositoryId id,
in Identifier name,

in VersionSpec version

);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,

in VersionSpec version,

in IDLType type,

in any value

);

StructDef create_struct (
in RepositoryId id,
in Identifier name,

12 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

in VersionSpec version,

in StructMemberSeq members

);

UnionDef create_union (
in RepositoryId id,
in Identifier name,

in VersionSpec version,

in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in RepositoryId id,
in Identifier name,

in VersionSpec version,

in EnumMemberSeq members

);

AliasDef create_alias (
in RepositoryId id,
in Identifier name,

in VersionSpec version,

in IDLType original_type

);

InterfaceDef create_interface (
in RepositoryId id,
in Identifier name,

in VersionSpec version,

in InterfaceDefSeq base_interfaces

);

};

13 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

};

Read Interface

The lookup operation locates a definition relative to this container given a scoped name using OMG
IDL's name scoping rules. An absolute scoped name (beginning with "::") locates the definition relative to
the enclosing Repository. If no object is found, a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited into the object. The
operation is used to navigate through the hierarchy of objects. Starting with the Repository object, a
client uses this operation to list all of the objects contained by the Repository, all of the objects contained
by the modules within the Repository, and then all of the interfaces within a specific module, and so on.

limit_type If limit_type is set to dk_all, objects of all interface types are returned. For example, if this is
an InterfaceDef, the attribute, operation, and exception objects are all returned. If limit_type is set to a
specific interface, only objects of that interface type are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute.

exclude_inherited If set to TRUE, inherited objects (if there are any) are not returned. If set to FALSE,
all contained objects-whether contained due to inheritance or because they were defined within the
object-are returned.

The lookup_name operation is used to locate an object by name within a particular object or within the
objects contained by that object.

search_name Specifies which name is to be searched for.

levels_to_search Controls whether the lookup is constrained to the object the operation is invoked on or
whether it should search through objects contained by the object as well.

Setting levels_to_search to -1 searches the current object and all contained objects. Setting
levels_to_search to 1 searches only the current object.

limit_type If limit_type is set to dk_all, objects of all interface types are returned (e.g., attributes,
operations, and exceptions are all returned). If limit_type is set to a specific interface, only objects of
that interface type are returned. For example, only attribute objects are returned if limit_type is set to
dk_Attribute.

exclude_inherited If set to TRUE, inherited objects (if there are any) are not returned. If set to FALSE,
all contained objects (whether contained due to inheritance or because they were defined within the
object) are returned.

The describe_contents operation combines the contents operation and the describe operation. For each
object returned by the contents operation, the description of the object is returned (i.e., the object's
describe operation is invoked and the results returned).

max_returned_objs Limits the number of objects that can be returned in an invocation of the call to the
number provided. Setting the parameter to -1 means return all contained objects.

14 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

Write Interface

The Container interface provides operations to create ModuleDefs, ConstantDefs, StructDefs,
UnionDefs, EnumDefs, AliasDefs, and InterfaceDefs as contained objects. The defined_in attribute of
a definition created with any of these operations is initialized to identify the Container on which the
operation is invoked, and the containing_repository attribute is initialized to its Repository.

The create_<type> operations all take id and name parameters which are used to initialize the identity of
the created definition. An error is returned if an object with the specified id already exists within this
object's Repository, or, assuming multiple versions are not supported, if an object with the specified
name already exists within this Container.

The create_module operation returns a new empty ModuleDef. Definitions can be added using
Container::create_<type> operations on the new module, or by using the Contained::move operation.

The create_constant operation returns a new ConstantDef with the specified type and value.

The create_struct operation returns a new StructDef with the specified members. The type member of
the StructMember structures is ignored, and should be set to TC_void. See "StructDef" on page 6-19
for more information.

The create_union operation returns a new UnionDef with the specified discriminator_type and
members. The type member of the UnionMember structures is ignored, and should be set to TC_void.
See "UnionDef" on page 6-19 for more information.

The create_enum operation returns a new EnumDef with the specified members. See "EnumDef" on
page 6-20 for more information.

The create_alias operation returns a new AliasDef with the specified original_type.

The create_interface operation returns a new empty InterfaceDef with the specified base_interfaces.
Type, exception, and constant definitions can be added using Container::create_<type> operations on
the new InterfaceDef. OperationDefs can be added using InterfaceDef::create_operation and
AttributeDefs can be added using Interface::create_attribute. Definitions can also be added using the
Contained::move operation

6.5.5 IDLType

The IDLType interface is an abstract interface inherited by all IR objects that represent OMG IDL types.
It provides access to the TypeCode describing the type, and is used in defining other interfaces wherever
definitions of IDL types must be referenced.

module CORBA {

interface IDLType : IRObject {

readonly attribute TypeCode type;

15 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

};

};

The type attribute describes the type defined by an object derived from IDLType.

6.5.6 Repository

Repository is an interface that provides global access to the Interface Repository. The Repository object
can contain constants, typedefs, exceptions, interfaces, and modules. As it inherits from Container, it can
be used to look up any definition (whether globally defined or defined within a module or interface) either
by name or by id.

There may be more than one Interface Repository in a particular ORB environment (although some
ORBs might require that definitions they use be registered with a particular repository). Each ORB
environment will provide a means for obtaining object references to the Repositories available within the
environment.

module CORBA {

interface Repository : Container {

// read interface

Contained lookup_id (in RepositoryId search_id);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

SequenceDef create_sequence (

in unsigned long bound,

in IDLType element_type

);

ArrayDef create_array (

in unsigned long length,

in IDLType element_type

);

};

16 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

};

Read Interface

The lookup_id operation is used to lookup an object in a Repository given its RepositoryId. If the
Repository does not contain a definition for search_id, a nil object reference is returned.

The get_primitive operation returns a reference to a PrimitiveDef with the specified kind attribute. All
PrimitiveDefs are immutable and owned by the Repository.

Write Interface

The three create_<type> operations create new objects defining anonymous types. As these interfaces
are not derived from Contained, it is the caller's responsibility to invoke destroy on the returned object if
it is not successfully used in creating a definition that is derived from Contained. Each anonymous type
definition must be used in defining exactly one other object.

The create_string operation returns a new StringDef with the specified bound, which must be non-zero.
The get_primitive operation is used for unbounded strings.

The create_sequence operation returns a new SequenceDef with the specified bound and
element_type.

The create_array operation returns a new ArrayDef with the specified length and element_type.

6.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, exceptions, interfaces and other module objects.

module CORBA {

interface ModuleDef : Container, Contained {

};

struct ModuleDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

};

17 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

};

The inherited describe operation for a ModuleDef object returns a ModuleDescription.

6.5.8 ConstantDef Interface

A ConstantDef object defines a named constant.

module CORBA {

interface ConstantDef : Contained {

readonly attribute TypeCode type;

attribute IDLType type_def;

attribute any value;

};

struct ConstantDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode type;

any value;

};

};

Read Interface

The type attribute specifies the TypeCode describing the type of the constant. The type of a constant
must be one of the simple types (long, short, float, char, string, octet, etc.). The type_def attribute
identifies the definition of the type of the constant.

The value attribute contains the value of the constant, not the computation of the value (e.g., the fact that
it was defined as "1+2").

The describe operation for a ConstantDef object returns a ConstantDescription.

18 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

Write Interface

Setting the type_def attribute also updates the type attribute.

When setting the value attribute, the TypeCode of the supplied any must be equal to the type attribute
of the ConstantDef.

6.5.9 TypedefDef Interface

TypedefDef is an abstract interface used as a base interface for all named non-object types (structures,
unions, enumerations, and aliases). The TypedefDef interface is not inherited by the definition objects for
primitive or anonymous types.

module CORBA {

interface TypedefDef : Contained, IDLType {

};

struct TypeDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode type;

};

};

The inherited describe operation for interfaces derived from TypedefDef returns a TypeDescription.

6.5.10 StructDef

A StructDef represents an OMG IDL structure definition.

module CORBA {

struct StructMember {

Identifier name;

TypeCode type;

19 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

IDLType type_def;

};

typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef {

attribute StructMemberSeq members;

};

};

Read Interface

The members attribute contains a description of each structure member.

The inherited type attribute is a tk_struct TypeCode describing the structure.

Write Interface

Setting the members attribute also updates the type attribute. When setting the members attribute, the
type member of the StructMember structure is ignored and should be set to TC_void.

6.5.11 UnionDef

A UnionDef represents an OMG IDL union definition.

module CORBA {

struct UnionMember {

Identifier name;

any label;

TypeCode type;

IDLType type_def;

};

typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef {

readonly attribute TypeCode discriminator_type;

20 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

attribute IDLType discriminator_type_def;

attribute UnionMemberSeq members;

};

};

Read Interface

The discriminator_type and discriminator_type_def attributes describe and identify the union's
discriminator type.

The members attribute contains a description of each union member. The label of each
UnionMemberDescription is a distinct value of the discriminator_type. Adjacent members can have
the same name. Members with the same name must also have the same type. A label with type octet
and value 0 indicates the default union member.

The inherited type attribute is a tk_union TypeCode describing the union.

Write Interface

Setting the discriminator_type_def attribute also updates the discriminator_type attribute and setting
the discriminator_type_def or members attribute also updates the type attribute.

When setting the members attribute, the type member of the UnionMember structure is ignored and
should be set to TC_void.

6.5.12 EnumDef

An EnumDef represents an OMG IDL enumeration definition.

module CORBA {

typedef sequence <Identifier> EnumMemberSeq;

interface EnumDef : TypedefDef {

attribute EnumMemberSeq members;

};

};

Read Interface

The members attribute contains a distinct name for each possible value of the enumeration.

21 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

Write Interface

Setting the members attribute also updates the type attribute.

6.5.13 AliasDef

An AliasDef represents an OMG IDL typedef that aliases another definition.

module CORBA {

interface AliasDef : TypedefDef {

attribute IDLType original_type_def;

};

};

6.5.14 Read Interface

The original_type_def attribute identifies the type being aliased.

The inherited type attribute is a tk_alias TypeCode describing the alias.

Write Interface

Setting the original_type_def attribute also updates the type attribute.

6.5.15 PrimitiveDef

A PrimitiveDef represents one of the IDL primitive types. As primitive types are unnamed, this interface
is not derived from TypedefDef or Contained.

module CORBA {

enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,

pk_float, pk_double, pk_boolean, pk_char, pk_octet,

pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref

};

22 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

interface PrimitiveDef: IDLType {

readonly attribute PrimitiveKind kind;

};

};

The kind attribute indicates which primitive type the PrimitiveDef represents. There are no
PrimitiveDefs with kind pk_null. A PrimitiveDef with kind pk_string represents an unbounded string.
A PrimitiveDef with kind pk_objref represents the IDL type Object.

The inherited type attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using
Repository::get_primitive.

6.5.16 StringDef

A StringDef represents an IDL bounded string type. The unbounded string type is represented as a
PrimitiveDef. As string types are anonymous, this interface is not derived from TypedefDef or
Contained.

module CORBA {

interface StringDef : IDLType {

attribute unsigned long bound;

};

};

The bound attribute specifies the maximum number of characters in the string, and must not be zero.

The inherited type attribute is a tk_string TypeCode describing the string.

6.5.17 SequenceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonymous, this interface is not
derived from TypedefDef or Contained.

module CORBA {

interface SequenceDef : IDLType {

attribute unsigned long bound;

23 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

readonly attribute TypeCode element_type;

attribute IDLType element_type_def;

};

};

Read Interface

The bound attribute specifies the maximum number of elements in the sequence. A bound of zero
indicates an unbounded sequence.

The type of the elements is described by element_type and identified by element_type_def.

The inherited type attribute is a tk_sequence TypeCode describing the sequence.

Write Interface

Setting the element_type_def attribute also updates the element_type attribute.

Setting the bound or element_type_def attribute also updates the type attribute.

6.5.18 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this interface is not derived
from TypedefDef or Contained.

module CORBA {

interface ArrayDef : IDLType {

attribute unsigned long length;

readonly attribute TypeCode element_type;

attribute IDLType element_type_def;

};

};

Read Interface

The length attribute specifies the number of elements in the array.

The type of the elements is described by element_type and identified by element_type_def. Since an

24 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

ArrayDef only represents a single dimension of an array, multi-dimensional IDL arrays are represented
by multiple ArrayDef objects, one per array dimension. The element_type_def attribute of the
ArrayDef representing the leftmost index of the array, as defined in IDL, will refer to the ArrayDef
representing the next index to the right, and so on. The innermost ArrayDef represents the rightmost
index and the element type of the multi-dimensional OMG IDL array.

The inherited type attribute is a tk_array TypeCode describing the array.

Write Interface

Setting the element_type_def attribute also updates the element_type attribute.

Setting the bound or element_type_def attribute also updates the type attribute.

6.5.19 ExceptionDef

An ExceptionDef represents an exception definition.

module CORBA {

interface ExceptionDef : Contained {
readonly attribute TypeCode type;

attribute StructMemberSeq members;

};

struct ExceptionDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode type;

};

};

Read Interface

The type attribute is a tk_except TypeCode describing the exception.

The members attribute describes any exception members.

25 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

The describe operation for a ExceptionDef object returns an ExceptionDescription.

Write Interface

Setting the members attribute also updates the type attribute. When setting the members attribute, the
type member of the StructMember structure is ignored and should be set to TC_void.

6.5.20 AttributeDef

An AttributeDef represents the information that defines an attribute of an interface.

module CORBA {

enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {

readonly attribute TypeCode type;

attribute IDLType type_def;

attribute AttributeMode mode;

};

struct AttributeDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode type;

AttributeMode mode;

};

};

Read Interface

The type attribute provides the TypeCode describing the type of this attribute. The type_def attribute
identifies the object defining the type of this attribute.

26 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

The mode attribute specifies read only or read/write access for this attribute.

Write Interface

Setting the type_def attribute also updates the type attribute.

6.5.21 OperationDef

An OperationDef represents the information needed to define an operation of an interface.

module CORBA {

enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {

Identifier name;

TypeCode type;

IDLType type_def;

ParameterMode mode;

};

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;

typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;

typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {

readonly attribute TypeCode result;

attribute IDLType result_def;

attribute ParDescriptionSeq params;

attribute OperationMode mode;

attribute ContextIdSeq contexts;

27 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode result;

OperationMode mode;

ContextIdSeq contexts;

ParDescriptionSeq parameters;

ExcDescriptionSeq exceptions;

};

};

Read Interface

The result attribute is a TypeCode describing the type of the value returned by the operation. The
result_def attribute identifies the definition of the returned type.

The params attribute describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptions in the sequence is
significant. The name member of each structure provides the parameter name. The type member is a
TypeCode describing the type of the parameter. The type_def member identifies the definition of the
type of the parameter. The mode member indicates whether the parameter is an in, out, or inout
parameter.

The operation's mode is either oneway (i.e., no output is returned) or normal.

The contexts attribute specifies the list of context identifiers that apply to the operation.

The exceptions attribute specifies the list of exception types that can be raised by the operation.

The inherited describe operation for an OperationDef object returns an OperationDescription.

28 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

The inherited describe_contents operation provides a complete description of this operation, including a
description of each parameter defined for this operation.

Write Interface

Setting the result_def attribute also updates the result attribute.

The mode attribute can only be set to OP_ONEWAY if the result is TC_void and all elements of
params have a mode of PARAM_IN.

6.5.22 InterfaceDef

An InterfaceDef object represents an interface definition. It can contain constants, typedefs, exceptions,
operations, and attributes.

module CORBA {

interface InterfaceDef;

typedef sequence <InterfaceDef> InterfaceDefSeq;

typedef sequence <RepositoryId> RepositoryIdSeq;

typedef sequence <OperationDescription> OpDescriptionSeq;

typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {

// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

OpDescriptionSeq operations;

29 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

AttrDescriptionSeq attributes;

RepositoryIdSeq base_interfaces;

TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode

);

OperationDef create_operation (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in IDLType result,

in OperationMode mode,

in ParDescriptionSeq params,

in ExceptionDefSeq exceptions,

in ContextIdSeq contexts

);

};

struct InterfaceDescription {

30 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

RepositoryIdSeq base_interfaces;

};

};

Read Interface

The base_interfaces attribute lists all the interfaces from which this interface inherits. The is_a operation
returns TRUE if the interface on which it is invoked either is identical to or inherits, directly or indirectly,
from the interface identified by its interface_id parameter. Otherwise it returns FALSE.

The describe_interface operation returns a FullInterfaceDescription describing the interface, including
its operations and attributes.

The inherited describe operation for an InterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and exceptions defined in this
InterfaceDef and the list of attributes and operations either defined or inherited in this InterfaceDef. If the
exclude_inherited parameter is set to TRUE, only attributes and operations defined within this interface
are returned. If the exclude_inherited parameter is set to FALSE, all attributes and operations are
returned.

Write Interface

Setting the base_interfaces attribute returns an error if the name attribute of any object contained by this
InterfaceDef conflicts with the name attribute of any object contained by any of the specified base
InterfaceDefs.

The create_attribute operation returns a new AttributeDef contained in the InterfaceDef on which it is
invoked. The id, name, version, type_def, and mode attributes are set as specified. The type attribute is
also set. The defined_in attribute is initialized to identify the containing InterfaceDef. An error is
returned if an object with the specified id already exists within this object's Repository, or if an object
with the specified name already exists within this InterfaceDef.

The create_operation operation returns a new OperationDef contained in the InterfaceDef on which it
is invoked. The id, name, version, result_def, mode, params, exceptions, and contexts attributes are
set as specified. The result attribute is also set. The defined_in attribute is initialized to identify the
containing InterfaceDef. An error is returned if an object with the specified id already exists within this
object's Repository, or if an object with the specified name already exists within this InterfaceDef.

31 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

6.6 RepositoryIds
RepositoryIds are values that can be used to establish the identity of information in the repository. A
RepositoryId is represented as a string, allowing programs to store, copy, and compare them without
regard to the structure of the value. It does not matter what format is used for any particular
RepositoryId. However, conventions are used to manage the name space created by these IDs.

RepositoryIds may be associated with OMG IDL definitions in a variety of ways. Installation tools might
generate them, they might be defined with pragmas in OMG IDL source, or they might be supplied with
the package to be installed.

The format of the id is a short format name followed by a colon (":") followed by characters according to
the format. This specification defines three formats: one derived from OMG IDL names, one that uses
DCE UUIDs, and another intended for short-term use, such as in a development environment.

6.6.1 OMG IDL Format

The OMG IDL format for RepositoryIds primarily uses OMG IDL scoped names to distinguish between
definitions. It also includes an optional unique prefix, and major and minor version numbers.

The RepositoryId consist of three components, separated by colons, (":")

The first component is the format name, "IDL".

The second component is a list of identifiers, separated by "/" characters. These identifiers are arbitrarily
long sequences of alphabetic, digit, underscore ("_"), hyphen ("-"), and period (".") characters. Typically,
the first identifier is a unique prefix, and the rest are the OMG IDL Identifiers that make up the scoped
name of the definition.

The third component is made up of major and minor version numbers, in decimal format, separated by a
".". When two interfaces have RepositoryIds differing only in minor version number it can be assumed
that the definition with the higher version number is upwardly compatible with (i.e. can be treated as
derived from) the one with the lower minor version number.

6.6.2 DCE UUID Format

DCE UUID format RepositoryIds start with the characters "DCE:" and are followed by the printable
form of the UUID, a colon, and a decimal minor version number, for example:
"DCE:700dc518-0110-11ce-ac8f-0800090b5d3e:1".

6.6.3 LOCAL Format

Local format RepositoryIds start with the characters "LOCAL:" and are followed by an arbitrary string.
Local format IDs are not intended for use outside a particular repository, and thus do not need to
conform to any particular convention. Local IDs that are just consecutive integers might be used within a
development environment to have a very cheap way to manufacture the IDs while avoiding conflicts with

32 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

well-known interfaces.

6.6.4 Pragma Directives for RepositoryId

Three pragma directives (id, prefix, and version), are specified accommodate arbitrary RepositoryId
formats and still support the OMG IDL RepositoryId format with minimal annotation. The pragma
directives can be used with the OMG IDL, DCE UUID, and LOCAL formats. An IDL compiler must
either interpret these annotations as specified, or ignore them completely.

The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> "<id>"

associates an arbitrary RepositoryId string with a specific OMG IDL name. The <name> can be a fully
or partially scoped name or a simple identifier, interpreted according to the usual OMG IDL name lookup
rules relative to the scope within which the pragma is contained.

The Prefix Pragma

An OMG IDL pragma of the format

#pragma prefix "<string>"

sets the current prefix used in generating OMG IDL format RepositoryIds. The specified prefix applies
to RepositoryIds generated after the pragma until the end of the current scope is reached or another
prefix pragma is encountered.

For example, the RepositoryId for the initial version of interface Printer defined on module Office by an
organization known as "SoftCo" might be "IDL:SoftCo/Office/Printer:1.0".

This format makes it convenient to generate and manage a set of IDs for a collection of OMG IDL
definitions. The person creating the definitions sets a prefix ("SoftCo"), and the IDL compiler or other
tool can synthesize all the needed IDs.

Because RepositoryIds may be used in many different computing environments and ORBs, as well as
over a long period of time, care must be taken in choosing them. Prefixes that are distinct, such as
trademarked names, domain names, UUIDs, and so forth, are preferable to generic names such as
"document."

The Version Pragma

An OMG IDL pragma of the format

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMG IDL format RepositoryId for a specific

33 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

OMG IDL name. The <name> can be a fully or partially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookup rules relative to the scope within which the pragma is
contained. The <major> and <minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, version 1.0 is assumed.

Generation of OMG IDL - Format IDs

A definition is globally identified by an OMG IDL - format RepositoryId if no ID pragma is encountered
for it.

The ID string can be generated by starting with the string "IDL:". Then, if any prefix pragma applies, it is
appended, followed by a "/" character. Next, the components of the scoped name of the definition,
relative to the scope in which any prefix that applies was encountered, are appended, separated by "/"
characters. Finally, a ":" and the version specification are appended.

For example, the following OMG IDL:

module M1 {

typedef long T1;

typedef long T2;

#pragma ID T2 "DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3"

};

#pragma prefix "P1"

module M2 {

module M3 {

#pragma prefix "P2"

typedef long T3;

};

typedef long T4;

#pragma version T4 2.4

};

specifies types with the following scoped names and RepositoryIds:

::M1::T1 IDL:M1/T1:1.0

34 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

::M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3

::M2::M3::T3 IDL:P2/T3:1.0

::M2::T4 IDL:P1/M2/T4:2.4

For this scheme to provide reliable global identity, the prefixes used must be unique. Two non-colliding
options are suggested: Internet domain names and DCE UUIDs.

Furthermore, in a distributed world, where different entities independently evolve types, a convention
must be followed to avoid the same RepositoryId being used for two different types. Only the entity that
created the prefix has authority to create new IDs by simply incrementing the version number. Other
entities must use a new prefix, even if they are only making a minor change to an existing type.

Prefix pragmas can be used to preserve the existing IDs when a module or other container is renamed or
moved.

module M4 {

#pragma prefix "P1/M2"

module M3 {

#pragma prefix "P2"

typedef long T3;

};

typedef long T4;

#pragma version T4 2.4

};

This OMG IDL declares types with the same global identities as those declared in module M2 above.

For More Information

Section 6.8, "OMG IDL for Interface Repository," on page 6-41 shows the OMG IDL specification of
the IR, including the #pragma directive; Section 3.3, "Preprocessing," on page 3-8 contain additional,
general information on the pragma directive.

6.7 TypeCodes
TypeCodes are values that represent invocation argument types and attribute types. They can be
obtained from the Interface Repository or from IDL compilers.

35 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

TypeCodes have a number of uses. They are used in the dynamic invocation interface to indicate the
types of the actual arguments. They are used by an Interface Repository to represent the type
specifications that are part of many OMG IDL declarations. Finally, they are crucial to the semantics of
the any type.

TypeCodes are themselves values that can be passed as invocation arguments. To allow different ORB
implementations to hide extra information in TypeCodes, the representation of TypeCodes will be
opaque (like object references). However, we will assume that the representation is such that TypeCode
"literals" can be placed in C include files.

Abstractly, TypeCodes consist of a "kind" field, and a set of parameters appropriate for that kind. For
example, the TypeCode describing OMG IDL type long has kind tk_long and no parameters. The
TypeCode describing OMG IDL type sequence<boolean,10> has kind tk_sequence and two
parameters: 10 and boolean.

6.7.1 The TypeCode Interface

The PIDL interface for TypeCodes is

module CORBA {

enum TCKind {

tk_null, tk_void,

tk_short, tk_long, tk_ushort, tk_ulong,

tk_float, tk_double, tk_boolean, tk_char,

tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,

tk_struct, tk_union, tk_enum, tk_string,

tk_sequence, tk_array, tk_alias, tk_except

};

interface TypeCode {

exception Bounds {};

exception BadKind {};

// for all TypeCode kinds

boolean equal (in TypeCode tc);

TCKind kind ();

36 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except

RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except

Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsigned long index) raises (BadKind, Bounds);

// for tk_struct, tk_union, and tk_except

TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

// for tk_union

any member_label (in unsigned long index) raises (BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array

unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, and tk_alias

TypeCode content_type () raises (BadKind);

// deprecated interface

long param_count ();

any parameter (in long index) raises (Bounds);

};

};

With the above operations, any TypeCode can be decomposed into its constituent parts. The BadKind
exception is raised if an operation is not appropriate for the TypeCode kind is invoked.

The equal operation can be invoked on any TypeCode. Equal TypeCodes are interchangeable, and give

37 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

identical results when TypeCode operations are applied to them.

The kind operation can be invoked on any TypeCode. Its result determines what other operations can be
invoked on the TypeCode.

The id operation can be invoked on object reference, structure, union, enumeration, alias, and exception
TypeCodes. It returns the RepositoryId globally identifying the type. Object reference and exception
TypeCodes always have a RepositoryId. Structure, union, enumeration, and alias TypeCodes obtained
from the Interface Repository or the ORB::create_operation_list operation also always have a
RepositoryId. Otherwise, the id operation can return an empty string.

The name operation can also be invoked on object reference, structure, union, enumeration, alias, and
exception TypeCodes. It returns the simple name identifying the type within its enclosing scope. Since
names are local to a Repository, the name returned from a TypeCode may not match the name of the
type in any particular Repository, and may even be an empty string.

The member_count and member_name operations can be invoked on structure, union, and
enumeration TypeCodes. Member_count returns the number of members constituting the type.
Member_name returns the simple name of the member identified by index. Since names are local to a
Repository, the name returned from a TypeCode may not match the name of the member in any
particular Repository, and may even be an empty string.

The member_type operation can be invoked on structure and union TypeCodes. It returns the
TypeCode describing the type of the member identified by index.

The member_label, discriminator_type, and default_index operations can only be invoked on union
TypeCodes. Member_label returns the label of the union member identified by index. For the default
member, the label is the zero octet. The discriminator_type operation returns the type of all non-default
member labels. The default_index operation returns the index of the default member, or -1 if there is no
default member.

The member_name, member_type, and member_label operations raise Bounds if the index parameter
is greater than or equal to the number of members constituting the type.

The length operation can be invoked on string, sequence, and array TypeCodes. For strings and
sequences, it returns the bound, with zero indicating an unbounded string or sequence. For arrays, it
returns number of elements in the array.

The content_type operation can be invoked on sequence, array, and alias TypeCodes. For sequences
and arrays, it returns the element type. For aliases, it returns the original type.

An array TypeCode only describes a single dimension of an OMG IDL array. Multi-dimensional arrays
are represented by nesting TypeCodes, one per dimension. The outermost tk_array Typecode describes
the leftmost array index of the array as defined in IDL. Its content_type describes the next index. The
innermost nested tk_array TypeCode describes the rightmost index and the array element type.

The deprecated param_count and parameter operations provide access to those parameters that were
present in previous versions of CORBA. Some information available via other TypeCode operations is
not visible via the parameter operation. The meaning of the indexed parameters for each TypeCode kind

38 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

are listed in TABLE 12. on page 6-37, along with the information that is not visible via the parameter
operation.

TABLE 12. Legal TypeCode Kinds and Parameters

KIND PARAMETER LIST NOT VISIBLE
tk_null *NONE*

tk_void *NONE*

tk_short *NONE*

tk_long *NONE*

tk_ushort *NONE*

tk_ulong *NONE*

tk_float *NONE*

tk_double *NONE*

tk_boolean *NONE*

tk_char *NONE*

tk_octet *NONE*

tk_any *NONE*

tk_TypeCode *NONE*

tk_Principal *NONE*

tk_objref { interface-id } interface name

tk_struct { struct-name, member-name, TypeCode, ... (repeat pairs) } RepositoryId

tk_union
{ union-name, discriminator-TypeCode, label-value, member-name,
TypeCode, ... (repeat triples) }

RepositoryId

tk_enum { enum-name, enumerator-name, ... } RepositoryId

tk_string { maxlen-integer }

tk_sequence { TypeCode, maxlen-integer }

tk_array { TypeCode, length-integer }

tk_alias { alias-name, TypeCode } Repositoryid

tk_except { except-name, member-name, TypeCode, ... (repeat pairs) } RepositoryId

The tk_objref TypeCode represents an interface type. Its parameter is the RepositoryId of that
interface.

A structure with N members results in a tk_struct TypeCode with 2N+1 parameters: first, the simple
name of the struct; the rest are member names alternating with the corresponding member TypeCode.
Member names are represented as strings.

A union with N members results in a tk_union TypeCode with 3N+2 parameters: the simple name of the
union, the discriminator TypeCode followed by a label value, member name, and member TypeCode for
each of the N members. The label values are all values of the data type designated by the discriminator
TypeCode, with one exception. The default member (if present) is marked with a label value consisting
of the 0 octet. Recall that the operation "parameter(tc,i)" returns an any, and that anys themselves carry a
TypeCode that can distinguish an octet from any of the legal switch types.

39 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

The tk_enum TypeCode has the simple name of the enum followed by the enumerator names as
parameters. Enumerator names are represented as strings.

The tk_string TypeCode has 1 parameter: an integer giving the maximum string length. A maximum of
0 denotes unbounded.

The tk_sequence TypeCode has 2 parameters: a TypeCode for the sequence elements, and an integer
giving the maximum sequence. Again, 0 denotes unbounded.

The tk_array TypeCode has 2 parameters: a TypeCode for the array elements, and an integer giving the
array length. Arrays are never unbounded.

The tk_alias TypeCode has 2 parameters: the name of the alias followed by the TypeCode of the type
being aliased.

The tk_except TypeCode has the same format as the tk_struct TypeCode, except that exceptions with
no members are allowed.

6.7.2 TypeCode Constants

If "typedef ... FOO;" is an IDL type declaration, the IDL compiler will (if asked) produce a declaration
of a TypeCode constant named TC_FOO for the C language mapping. In the case of an unnamed,
bounded string type used directly in an operation or attribute declaration, a TypeCode constant named
TC_string_n, where n is the bound of the string is produced. (For example, "string<4> op1();" produces
the constant "TC_string_4".) These constants can be used with the dynamic invocation interface, and any
other routines that require TypeCodes. The predefined TypeCode constants, named according to the C
language mapping, are:

TC_null
TC_void
TC_short
TC_long
TC_ushort
TC_ulong
TC_float
TC_double
TC_boolean
TC_char
TC_octet
TC_any
TC_TypeCode
TC_Principal
TC_Object = tk_objref { Object }
TC_string = tk_string { 0 } // unbounded
TC_CORBA_NamedValue = tk_struct { ... }
TC_CORBA_InterfaceDescription = tk_struct { ... }
TC_CORBA_OperationDescription = tk_struct { ... }
TC_CORBA_AttributeDescription = tk_struct { ... }

40 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

TC_CORBA_ParameterDescription = tk_struct { ... }
TC_CORBA_ModuleDescription = tk_struct { ... }
TC_CORBA_ConstantDescription = tk_struct { ... }
TC_CORBA_ExceptionDescription = tk_struct { ... }
TC_CORBA_TypeDescription = tk_struct { ... }
TC_CORBA_InterfaceDef_FullInterfaceDescription = tk_struct { ... }

The exact form for TypeCode constants is language mapping, and possibly implementation, specific.

6.7.3 Creating TypeCodes

When creating type definition objects in an Interface Repository, types are specified in terms of object
references, and the TypeCodes describing them are generated automatically.

In some situations, such as bridges between ORBs, TypeCodes need to be constructed outside of any
Interface Repository. This can be done using operations on the ORB pseudo-object.

module CORBA {

interface ORB {

// other operations ...

TypeCode create_struct_tc (

in RepositoryId id,

in Identifier name,

in StructMemberSeq members

);

TypeCode create_union_tc (

in RepositoryId id,

in Identifier name,

in TypeCode discriminator_type,

in UnionMemberSeq members

);

TypeCode create_enum_tc (

in RepositoryId id,

41 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

in Identifier name,

in EnumMemberSeq members

);

TypeCode create_alias_tc (

in RepositoryId id,

in Identifier name,

in TypeCode original_type

);

TypeCode create_exception_tc (

in RepositoryId id,

in Identifier name,

in StructMemberSeq members

);

TypeCode create_interface_tc (

in RepositoryId id,

in Identifier name

);

TypeCode create_string_tc (

in unsigned long bound

);

TypeCode create_sequence_tc (

in unsigned long bound,

in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (

42 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

in unsigned long bound,

in unsigned long offset

);

TypeCode create_array_tc (

in unsigned long length,

in TypeCode element_type

);

};

};

Most of these operations are similar to corresponding IR operations for creating type definitions.
TypeCodes are used here instead of IDLType object references to refer to other types. In the
StructMember and UnionMember structures, only the type is used, and the type_def should be set to
nil.

The create_recursive_sequence_tc operation is used to create TypeCodes describing recursive
sequences (see See "Constructed Types" on page 22.) The result of this operation is used in constructing
other types, with the offset parameter determining which enclosing TypeCode describes the elements of
this sequence. For instance, to construct a TypeCode for the following OMG IDL structure, the offset
used when creating its sequence TypeCode would be one:

struct foo {

long value;

sequence <foo> chain;

};

Operations to create primitive TypeCodes are not needed, since TypeCode constants for these are
available.

6.8 OMG IDL for Interface Repository
This section contains the complete OMG IDL specification for the Interface Repository.

#pragma prefix "omg.org"

module CORBA {

43 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

typedef string Identifier;

typedef string ScopedName;

typedef string RepositoryId;

enum DefinitionKind {

dk_none, dk_all,

dk_Attribute, dk_Constant, dk_Exception, dk_Interface,

dk_Module, dk_Operation, dk_Typedef,

dk_Alias, dk_Struct, dk_Union, dk_Enum,

dk_Primitive, dk_String, dk_Sequence, dk_Array,

dk_Repository

};

interface IRObject {

// read interface

readonly attribute DefinitionKind def_kind;

// write interface

void destroy ();

};

typedef string VersionSpec;

interface Contained;

interface Repository;

interface Container;

interface Contained : IRObject {

// read/write interface

attribute RepositoryId id;

44 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

attribute Identifier name;

attribute VersionSpec version;

// read interface

readonly attribute Container defined_in;

readonly attribute ScopedName absolute_name;

readonly attribute Repository containing_repository;

struct Description {

DefinitionKind kind;

any value;

};

Description describe ();

// write interface

void move (

in Container new_container,

in Identifier new_name,

in VersionSpec new_version

);

};

interface ModuleDef;

interface ConstantDef;

interface IDLType;

interface StructDef;

interface UnionDef;

interface EnumDef;

interface AliasDef;

45 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

interface InterfaceDef;

typedef sequence <InterfaceDef> InterfaceDefSeq;

typedef sequence <Contained> ContainedSeq;

struct StructMember {

Identifier name;

TypeCode type;

IDLType type_def;

};

typedef sequence <StructMember> StructMemberSeq;

struct UnionMember {

Identifier name;

any label;

TypeCode type;

IDLType type_def;

};

typedef sequence <UnionMember> UnionMemberSeq;

typedef sequence <Identifier> EnumMemberSeq;

interface Container : IRObject {

// read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (

in DefinitionKind limit_type,

in boolean exclude_inherited

);

46 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

ContainedSeq lookup_name (

in Identifier search_name,

in long levels_to_search,

in DefinitionKind limit_type,

in boolean exclude_inherited

);

struct Description {

Contained contained_object;

DefinitionKind kind;

any value;

};

typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limit_type,

in boolean exclude_inherited,

in long max_returned_objs

);

// write interface

ModuleDef create_module (

in RepositoryId id,

in Identifier name,

in VersionSpec version

);

ConstantDef create_constant (

in RepositoryId id,

47 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

in Identifier name,

in VersionSpec version,

in IDLType type,

in any value

);

StructDef create_struct (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members

);

UnionDef create_union (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in IDLType discriminator_type,

in UnionMemberSeq members

);

EnumDef create_enum (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in EnumMemberSeq members

);

48 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

AliasDef create_alias (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in IDLType original_type

);

InterfaceDef create_interface (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in InterfaceDefSeq base_interfaces

);

};

interface IDLType : IRObject {

readonly attribute TypeCode type;

};

interface PrimitiveDef;

interface StringDef;

interface SequenceDef;

interface ArrayDef;

enum PrimitiveKind {

pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,

pk_float, pk_double, pk_boolean, pk_char, pk_octet,

pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref

};

49 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

interface Repository : Container {

// read interface

Contained lookup_id (in RepositoryId search_id);

PrimitiveDef get_primitive (in PrimitiveKind kind);

// write interface

StringDef create_string (in unsigned long bound);

SequenceDef create_sequence (

in unsigned long bound,

in IDLType element_type

);

ArrayDef create_array (

in unsigned long length,

in IDLType element_type

);

};

interface ModuleDef : Container, Contained {

};

struct ModuleDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

};

interface ConstantDef : Contained {

50 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

readonly attribute TypeCode type;

attribute IDLType type_def;

attribute any value;

};

struct ConstantDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode type;

any value;

};

interface TypedefDef : Contained, IDLType {

};

struct TypeDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode type;

};

interface StructDef : TypedefDef {

attribute StructMemberSeq members;

};

interface UnionDef : TypedefDef {

51 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

readonly attribute TypeCode discriminator_type;

attribute IDLType discriminator_type_def;

attribute UnionMemberSeq members;

};

interface EnumDef : TypedefDef {

attribute EnumMemberSeq members;

};

interface AliasDef : TypedefDef {

attribute IDLType original_type_def;

};

interface PrimitiveDef: IDLType {

readonly attribute PrimitiveKind kind;

};

interface StringDef : IDLType {

attribute unsigned long bound;

};

interface SequenceDef : IDLType {

attribute unsigned long bound;

readonly attribute TypeCode element_type;

attribute IDLType element_type_def;

};

interface ArrayDef : IDLType {

attribute unsigned long length;

readonly attribute TypeCode element_type;

52 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

attribute IDLType element_type_def;

};

interface ExceptionDef : Contained {

readonly attribute TypeCode type;

attribute StructMemberSeq members;

};

struct ExceptionDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode type;

};

enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {

readonly attribute TypeCode type;

attribute IDLType type_def;

attribute AttributeMode mode;

};

struct AttributeDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode type;

53 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

AttributeMode mode;

};

enum OperationMode {OP_NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};

struct ParameterDescription {

Identifier name;

TypeCode type;

IDLType type_def;

ParameterMode mode;

};

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef Identifier ContextIdentifier;

typedef sequence <ContextIdentifier> ContextIdSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;

typedef sequence <ExceptionDescription> ExcDescriptionSeq;

interface OperationDef : Contained {

readonly attribute TypeCode result;

attribute IDLType result_def;

attribute ParDescriptionSeq params;

attribute OperationMode mode;

attribute ContextIdSeq contexts;

attribute ExceptionDefSeq exceptions;

};

struct OperationDescription {

54 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

TypeCode result;

OperationMode mode;

ContextIdSeq contexts;

ParDescriptionSeq parameters;

ExcDescriptionSeq exceptions;

};

typedef sequence <RepositoryId> RepositoryIdSeq;

typedef sequence <OperationDescription> OpDescriptionSeq;

typedef sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, IDLType {

// read/write interface

attribute InterfaceDefSeq base_interfaces;

// read interface

boolean is_a (in RepositoryId interface_id);

struct FullInterfaceDescription {

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

OpDescriptionSeq operations;

AttrDescriptionSeq attributes;

55 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

RepositoryIdSeq base_interfaces;

TypeCode type;

};

FullInterfaceDescription describe_interface();

// write interface

AttributeDef create_attribute (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode

);

OperationDef create_operation (

in RepositoryId id,

in Identifier name,

in VersionSpec version,

in IDLType result,

in OperationMode mode,

in ParDescriptionSeq params,

in ExceptionDefSeq exceptions,

in ContextIdSeq contexts

);

};

struct InterfaceDescription {

56 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

Identifier name;

RepositoryId id;

RepositoryId defined_in;

VersionSpec version;

RepositoryIdSeq base_interfaces;

};

enum TCKind {

tk_null, tk_void,

tk_short, tk_long, tk_ushort, tk_ulong,

tk_float, tk_double, tk_boolean, tk_char,

tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,

tk_struct, tk_union, tk_enum, tk_string,

tk_sequence, tk_array, tk_alias, tk_except

};

interface TypeCode { // PIDL

exception Bounds {};

exception BadKind {};

// for all TypeCode kinds

boolean equal (in TypeCode tc);

TCKind kind ();

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except

RepositoryId id () raises (BadKind);

// for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and tk_except

Identifier name () raises (BadKind);

// for tk_struct, tk_union, tk_enum, and tk_except

57 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsigned long index) raises (BadKind, Bounds);

// for tk_struct, tk_union, and tk_except

TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

// for tk_union

any member_label (in unsigned long index) raises (BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

// for tk_string, tk_sequence, and tk_array

unsigned long length () raises (BadKind);

// for tk_sequence, tk_array, and tk_alias

TypeCode content_type () raises (BadKind);

// deprecated interface

long param_count ();

any parameter (in long index) raises (Bounds);

};

interface ORB {

// other operations ...

TypeCode create_struct_tc (

in RepositoryId id,

in Identifier name,

in StructMemberSeq members

);

TypeCode create_union_tc (

58 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

in RepositoryId id,

in Identifier name,

in TypeCode discriminator_type,

in UnionMemberSeq members

);

TypeCode create_enum_tc (

in RepositoryId id,

in Identifier name,

in EnumMemberSeq members

);

TypeCode create_alias_tc (

in RepositoryId id,

in Identifier name,

in TypeCode original_type

);

TypeCode create_exception_tc (

in RepositoryId id,

in Identifier name,

in StructMemberSeq members

);

TypeCode create_interface_tc (

in RepositoryId id,

in Identifier name

);

TypeCode create_string_tc (

59 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

in unsigned long bound

);

TypeCode create_sequence_tc (

in unsigned long bound,

in TypeCode element_type

);

TypeCode create_recursive_sequence_tc (

in unsigned long bound,

in unsigned long offset

);

TypeCode create_array_tc (

in unsigned long length,

in TypeCode element_type

);

};

};

[Top] [Prev] [Next] [Bottom]

pubs@omg.org
Copyright © 1995, Object Management Group. All rights reserved.

60 of 60 9/3/99 11:36 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/intrep2.htm

