
[Top] [Prev] [Next] [Bottom] 

Dynamic Skeleton Interface 

5 

The Dynamic Skeleton interface (DSI) is a way to deliver requests from an ORB to an object
implementation that does not have compile-time knowledge of the type of the object it is implementing.
This contrasts with the type-specific, OMG IDL-based skeletons, but serves the same architectural role.

DSI is the server side's analogue to the client side's Dynamic Invocation Interface (DII). Just as the
implementation of an object cannot distinguish whether its client is using type-specific stubs or the DII,
the client who invokes an object cannot determine whether the implementation is using a type-specific

skeleton or the DSI to connect the implementation to the ORB.

Figure 5-1 Requests are delivered through skeletons, including dynamic ones

DSI, like DII, has many applications beyond interoperability solutions. Uses include interactive software
development tools based on interpreters, debuggers and monitors that want to dynamically interpose on
objects, and support for dynamically-typed languages such as LISP.

5.1 Overview 
The basic idea of the DSI is to implement all requests on a particular object by having the ORB invoke
the same upcall routine, a Dynamic Implementation Routine (DIR). Since in any language binding all
DIRs have the same signature, a single DIR could be used as the implementation for many objects, with
different interfaces.

The DIR is passed all the explicit operation parameters, and an indication of the object that was invoked
and the operation that was requested. The information is encoded in the request parameters. The DIR can
use the invoked object, its object adapter, and the Interface Repository to learn more about the particular
object and invocation. It can access and operate on individual parameters. It can make the same use of an
object adapter as other object implementations.

The Dynamic Skeleton interface could be supported by any object adapter. Like type-specific skeletons,
the DSI might have object adapter-specific details. This chapter describes a DSI interface for the Basic
Object Adapter (BOA) and shows how it is mapped to C and C++.

1 of 4 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dynskel.htm



5.2 Explicit Request State: ServerRequest
Pseudo Object
The ServerRequest pseudo object captures the explicit state of a request for the DSI, analogous to the
Request pseudo object in the DII. The following shows how it provides access to the information:

module CORBA {

pseudo interface ServerRequest

{

Identifier op_name ();

Context ctx ();

void params (inout NVList parms);

Any result ();

};

}

The target object of the invocation is provided by the language binding for the DIR. In the context of a
bridge, it will typically be a proxy for an object in some other ORB.

The op_name operation returns the name of the operation being invoked; according to OMG IDL's rules,
these names must be unique among all operations supported by this object's "most-derived" interface.
Note that the opertion names for getting and setting attributes are _get_<attribute_name> and
_set_<attribute_name>, respectively.

When the operation is not an attribute access, ctx will return the context information defined in OMG
IDL for operation (if any). Otherwise, this context is empty.

Operation parameters will be retrieved with params. They appear in the NVList in the order in which
they appear in the OMG IDL specification (left to right). This holds the "in", "out" and "inout" values.

The result operation is used to find where to store any return value for the call. Reporting of exceptions
(which preclude use of result and out/inout values in params) is a function of the language mapping.

See each language binding for a description of the memory management aspects of these parameters.

5.3 Dynamic Skeleton Interface: Language

2 of 4 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dynskel.htm



Mapping
Because DSI is defined in terms of a pseudo object, special attention must be paid to it in the language
mapping. This section provides general information about mapping the Dynamic Skeleton Interface to
programming languages.

Section 14.24, "Mapping of the Dynamic Skeleton Interface to C," on page 14-25 and Section 16.17,
"Mapping of Dynamic Skeleton Interface to C++," on page 16-43 provide mappings of the Dynamic
Skeleton Interface (supporting the BOA) to the C langugeand C++ languages. 

5.3.1 ServerRequest's Handling of Operation Parameters

There is no requirement that a ServerRequest pseudo object be usable as a general argument in OMG
IDL operations, or listed in "orb.idl".

The client side memory management rules normally applied to pseudo objects do not strictly apply to a
ServerRequest's handling of operation parameters. Instead, the memory associated with parameters
follows the memory management rules applied to data passed from skeletons into statically typed
implementation routines, and vice versa.

In some language mappings, exceptions need special treatment. This is because the normal mapping for
exceptions may require static knowledge of exception types. An example is the use of C++ exceptions,
which require special run time typing information that can only be generated by a C++ compiler.
Accordingly, the DSI and DII need an exception-reporting method that requires minimal compile-time
support: the DIR needs to be able to provide the TypeCode for an exception as it reports the exception.

Finally, note that these APIs have been specified to support a performance model whereby the ORB
doesn't implicitly consult an interface repository (i.e. perform any remote object invocations, potentially
slowing down a bridge) in order to handle an invocation. All the typing information is provided to the
ServerRequest pseudo object by an application. The ORB is allowed to verify that such information is
correct, but such checking is not required.

5.3.2 Registering Dynamic Implementation Routines

Although it is not portably specified by previous CORBA specifications, any ORB and its BOA
implementation must have some way of connecting type-specific skeletons to the methods that implement
the operations. The Dynamic Skeleton interface uses the same mechanism.

A typical ORB/BOA implementation defines an operation, perhaps used when the object is activated,
which specifies the methods to be used for a particular implementation class, for example, in C:

BOA_setimpl (BOA, ImplementationDef, MethodList, skeleton);

The MethodList would be the DIR; the skeleton could be a Dynamic Skeleton, which would construct a
ServerRequest object and invoke the DIR with it.

Whatever mechanism, whether at link time, run time, and so forth, is used to bind ordinary

3 of 4 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dynskel.htm



implementations to type-specific skeletons would also be used to bind dynamic implementations to
dynamic skeletons. Such bindings could be maintained on a per-object, per-interface, per-class, or other
basis.

[Top] [Prev] [Next] [Bottom] 

pubs@omg.org 
Copyright © 1995, Object Management Group. All rights reserved. 

4 of 4 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dynskel.htm


