
[Top] [Prev] [Next] [Bottom]

Dynamic Invocation Interface

4

4.1 Overview
The ORB Dynamic Invocation interface allows dynamic creation and invocation of requests to objects. A
client using this interface to send a request to an object obtains the same semantics as a client using the
operation stub generated from the type specification.

A request consists of an object reference, an operation, and a list of parameters. The ORB applies the
implementation-hiding (encapsulation) principle to requests.

In the Dynamic Invocation interface, parameters in a request are supplied as elements of a list. Each
element is an instance of a NamedValue (see "Common Data Structures" on page 4-1). Each parameter
is passed in its native data form.

Parameters supplied to a request may be subject to run-time type checking upon request invocation.
Parameters must be supplied in the same order as the parameters defined for the operation in the Interface
Repository.

All types defined in this chapter are part of the CORBA module. When referenced in OMG IDL, the type
names must be prefixed by "CORBA::".

4.1.1 Common Data Structures

The type NamedValue is a well-known data type in OMG IDL. It can be used either as a parameter type
directly or as a mechanism for describing arguments to a request. The type NVList is a pseudo-object
useful for constructing parameter lists. The types are described in OMG IDL and C, respectively, as:

typedef unsigned long Flags;

struct NamedValue {

Identifier name; // argument name

any argument; // argument

long len; // length/count of argument value

1 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

Flags arg_modes; // argument mode flags

};

CORBA_NamedValue * CORBA_NVList; /* C */

NamedValue and Flags are defined in the CORBA module.

The NamedValue and NVList structures are used in the request operations to describe arguments and
return values. They are also used in the context object routines to pass lists of property names and values.
Despite the above declaration for NVList, the NVList structure is partially opaque and may only be
created by using the ORB create_list operation.

A named value includes an argument name, argument value (as an any), length of the argument, and a set
of argument mode flags. When named value structures are used to describe arguments to a request, the
names are the argument identifiers specified in the OMG IDL definition for a specific operation.

As described in Section 14.7, "Mapping for Basic Data Types," on page 14-8, an any consists of a
TypeCode and a pointer to the data value. The TypeCode is a well-known opaque type that can encode a
description of any type specifiable in OMG IDL. A full description of TypeCodes is Section 14.7,
"Mapping for Basic Data Types," on page 14-8.

For most datatypes, len is the actual number of bytes that the value occupies. For object references, len is
1. TABLE 11. on page 4-2 shows the length of data values for the C language binding. The behavior of a
NamedValue is undefined if the len value is inconsistent with the TypeCode.

TABLE 11. C Type Lengths

Data type: X Length (X)
short sizeof (CORBA_short)

unsigned short sizeof (CORBA_unsigned_short)

long sizeof (CORBA_long)

unsigned long sizeof (CORBA_unsigned_long)

float sizeof (CORBA_float)

double sizeof (CORBA_double)

char sizeof (CORBA_char)

boolean sizeof (char)

octet sizeof (CORBA_octet)

string strlen (string) /* does NOT include `\0' byte! */

enum E {}; sizeof (CORBA_enum)

union U { } ; sizeof (U)

struct S { }; sizeof (S)

Object 1

array N of type T1 Length (T1) * N

sequence V of type T2 Length (T2) * V /* V is the actual, dynamic, number of elements */

2 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

The arg_modes field is defined as a bitmask (long) and may contain the following flag values:

CORBA::ARG_IN the associated value is an input only argument

CORBA::ARG_OUT the associated value is an output only argument

CORBA::ARG_INOUT the associated value is an in/out argument

These flag values identify the parameter passing mode for arguments. Additional flag values have specific
meanings for request and list routines, and are documented with their associated routines.

All other bits are reserved. The high-order 16 bits are reserved for implementation-specific flags.

4.1.2 Memory Usage

The values for output argument data types that are unbounded strings or unbounded sequences are
returned as pointers to dynamically allocated memory are shown in Table 21 . In order to facilitate the
freeing of all "out-arg memory", the request routines provide a mechanism for grouping, or keeping track
of, this memory. If so specified, out-arg memory is associated with the argument list passed to the create
request routine. When the list is deleted the associated out-arg memory will automatically be freed.

If the programmer chooses not to associate out-arg memory with an argument list, the programmer is
responsible for freeing each out parameter using CORBA_free(), which is discussed in Section 14.17,
"Argument Passing Considerations," on page 14-16

4.1.3 Return Status and Exceptions

In the Dynamic Invocation interface, many routines return a Status result, which is intended as a status
code. Status is defined in the CORBA modules as:

typedef unsigned long Status;

Conforming CORBA implementations are not required to return this status code; instead, the definition

typedef void Status;

is a conforming implementation (in which case no status code result is returned, except in the usual inout
Environment argument). Implementations are required to specify which Status behavior is supported.

4.2 Request Operations
The request operations are defined in terms of the Request pseudo-object. The Request routines use the
NVList definition defined in the preceding section.

module CORBA {

interface Request { // PIDL

3 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

Status add_arg (

in Identifier name, // argument name

in TypeCode arg_type, // argument datatype

in void * value, // argument value to be added

in long len, // length/count of argument value

in Flags arg_flags // argument flags

);

Status invoke (

in Flags invoke_flags // invocation flags

);

Stat us delete ();

Status send (

in Flags invoke_flags // invocation flags

);

Status get_response (

in Flags response_flags // response flags

);

};

};

4.2.1 create_request

Because it creates a pseudo-object, this operation is defined in the Object interface (see "Object
Reference Operations" on page 7-2 for the complete interface definition). The create_request operation
is performed on the Object which is to be invoked.

Status create_request (// PIDL

in Context ctx, // context object for operation

4 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

in Identifier operation, // intended operation on object

in NVList arg_list, // args to operation

inout NamedValue result, // operation result

out Request request, // newly created request

in Flags req_flags // request flags

);

This operation creates an ORB request. The actual invocation occurs by calling invoke or by using the
send / get_response calls.

The operation name specified on create_request is the same operation identifier that is specified in the
OMG IDL definition for this operation. In the case of attributes, it is the name as constructed following
the rules specified in the ServerRequest interface as described in the DSI in Section 5.2

The arg_list, if specified, contains a list of arguments (input, output, and/or input/output) which become
associated with the request. If arg_list is omitted (specified as NULL), the arguments (if any) must be
specified using the add_arg call below.

Arguments may be associated with a request by passing in an argument list or by using repetitive calls to
add_arg. One mechanism or the other may be used for supplying arguments to a given request; a mixture
of the two approaches is not supported.

If specified, the arg_list becomes associated with the request; until the invoke call has completed (or the
request has been deleted), the ORB assumes that arg_list (and any values it points to) remains
unchanged.

When specifying an argument list, the value and len for each argument must be specified. An argument's
datatype, name, and usage flags (i.e., in, out, inout) may also be specified; if so indicated, arguments are
validated for datatype, order, name, and usage correctness against the set of arguments expected for the
indicated operation.

An implementation of the request services may relax the order constraint (and allow arguments to be
specified out of order) by doing ordering based upon argument name.

The context properties associated with the operation are passed to the object implementation. The object
implementation may not modify the context information passed to it.

The operation result is placed in the result argument after the invocation completes.

The req_flags argument is defined as a bitmask (long) that may contain the following flag values:

CORBA::OUT_LIST_MEMORY Indicates that any out-arg memory is associated with the argument list
(NVList).

5 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

Setting the OUT_LIST_MEMORY flag controls the memory allocation mechanism for out-arg memory
(output arguments, for which memory is dynamically allocated). If OUT_LIST_MEMORY is specified,
an argument list must also have been specified on the create_request call. When output arguments of this
type are allocated, they are associated with the list structure. When the list structure is freed (see below),
any associated out-arg memory is also freed.

If OUT_LIST_MEMORY is not specified, then each piece of out-arg memory remains available until the
programmer explicitly frees it with procedures provided by the language mappings (See Section 14.17,
"Argument Passing Considerations," on page 14-16; Section 17.6, "NVList," on page 17-5; and Section
20.19, "Argument Passing Considerations," on page 20-11.)

4.2.2 add_arg

Status add_arg (// PIDL

in Identifier name, // argument name

in TypeCode arg_type, // argument datatype

in void * value, // argument value to be added

in long len, // length/count of argument value

in Flags arg_flags // argument flags

);

add_arg incrementally adds arguments to the request.

For each argument, minimally its value and len must be specified. An argument's datatype, name, and
usage flags (i.e in, out, inout) may also be specified. If so indicated, arguments are validated for datatype,
order, name, and usage correctness against the set of arguments expected for the indicated operation.

An implementation of the request services may relax the order constraint (and allow arguments to be
specified out of order) by doing ordering based upon argument name.

The arguments added to the request become associated with the request and are assumed to be
unchanged until the invoke has completed (or the request has been deleted).

Arguments may be associated with a request by specifying them on the create_request call or by adding
them via calls to add_arg. Using both methods for specifying arguments, for the same request, is not
currently supported.

In addition to the argument modes defined in Section 4.1.1, arg_flags may also take the flag
value:IN_COPY_VALUE. The argument passing flags defined in Section 4.1.1 may be used here to
indicate the intended parameter passing mode of an argument.

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used instead. This flag is
ignored for inout and out arguments.

6 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

4.2.3 invoke

Status invoke (// PIDL

in Flags invoke_flags // invocation flags

);

This operation calls the ORB, which performs method resolution and invokes an appropriate method. If
the method returns successfully, its result is placed in the result argument specified on create_request.

4.2.4 delete

Status delete (); // PIDL

This operation deletes the request. Any memory associated with the request (i.e. by using the
IN_COPY_VALUE flag) is also freed.

4.3 Deferred Synchronous Operations

4.3.1 send

Status send (// PIDL

in Flags invoke_flags // invocation flags

);

send initiates an operation according to the information in the Request. Unlike invoke, send returns
control to the caller without waiting for the operation to finish. To determine when the operation is done,
the caller must use the get_response or get_next_response operations described below. The out
parameters and return value must not be used until the operation is done.

Although it is possible for some standard exceptions to be raised by the send operation, there is no
guarantee that all possible errors will be detected. For example, if the object reference is not valid, send
might detect it and raise an exception, or might return before the object reference is validated, in which
case the exception will be raised when get_response is called.

If the operation is defined to be oneway or if INV_NO_RESPONSE is specified, then get_response
does not need to be called. In such cases, some errors might go unreported, since if they are not detected
before send returns there is no way to inform the caller of the error.

The following invocation flags are currently defined for send:

CORBA::INV_NO_RESPONSE Indicates that the invoker does not intend to wait for a response, nor
does it expect any of the output arguments (in/out and out) to be updated. This option may be specified

7 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

even if the operation has not been defined to be oneway.

4.3.2 send_multiple_requests

/* C */

CORBA_Status CORBA_send_multiple_requests (

CORBA_Request reqs[], /* array of Requests */

CORBA_Environment *env,

CORBA_long count, /* number of Requests */

CORBA_Flags invoke_flags

);

// C++

class ORB
{
public:
typedef sequence<Request_ptr> RequestSeq;

...

Status send_multiple_requests_oneway(const RequestSeq &);
Status send_multiple_requests_deferred(const RequestSeq &);

};

The Smalltalk mapping of send multiple requests is as follows:

sendMultipleRequests: aCollection

sendMultipleRequestOneway: aCollection

send_multiple_requests initiates more than one request in parallel. Like send, send_multiple_requests
returns to the caller without waiting for the operations to finish. To determine when each operation is
done, the caller must use the get_response or get_next_response operations described below.

The degree of parallelism in the initiation and execution of the requests is system dependent. There are no
guarantees about the order in which the requests are initiated. If INV_TERM_ON_ERR is specified, and
the ORB detects an error initiating one of the requests, it will not initiate any further requests from this
list. If INV_NO_RESPONSE is specified, it applies to all of the requests in the list.

The following invocation flags are currently defined for send_multiple_requests:

8 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

CORBA::INV_NO_RESPONSE indicates that at the invoker does not intend to wait for a response, nor
does it expect any of the output arguments (inout and out) to be updated. This option may be specified
even if the operation has not been defined to be oneway.

CORBA::INV_TERM_ON_ERR means that if one of the requests causes an error, the remaining
requests are not sent.

4.3.3 get_response

Status get_response (// PIDL

in Flags response_flags // response flags

get_response determines whether a request has completed. If get_response indicates that the operation
is done, the out parameters and return values defined in the Request are valid, and they may be treated as
if the Request invoke operation had been used to perform the request.

If the RESP_NO_WAIT flag is set, get_response returns immediately even if the request is still in
progress. Otherwise, get_response waits until the request is done before returning.

The following response flags are defined for get_response:

CORBA::RESP_NO_WAIT indicates that the caller does not want to wait for a response.

4.3.4 get_next_response

/* C */

CORBA_Status CORBA_get_next_response (

CORBA_Environment *env,

CORBA_Flags response_flags,

CORBA_Request *req

);

// C++

class ORB

{
public:
Boolean poll_next_response();
Status get_next_response(RequestSeq*&);

9 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

};

The Smalltalk mapping of get_next_response is as follows:

pollNextResponse

getNextResponse

get_next_response returns the next request that completes. Despite the name, there is no guaranteed
ordering among the completed requests, so the order in which they are returned from successive
get_next_response calls is not necessarily related to the order in which they finished.

If the RESP_NO_WAIT flag is set, and there are no completed requests pending, then get_next_response
returns immediately. Otherwise, get_next_response waits until some request finishes.

The following response flags are defined for get_next_response:

CORBA::RESP_NO_WAIT Indicates that the caller does not want to wait for a response.

4.4 List Operations
The list operations use the named-value structure defined above.

The list operations that create NVList objects are defined in the ORB interface described in Chapter 7,
but are described in this section. The NVList interface is shown below.

interface NVList { // PIDL

Status add_item (

in Identifier item_name, // name of item

in TypeCode item_type, // item datatype

in void *value, // item value

in long value_len, // length of item value

in Flags item_flags // item flags

);

Status free ();

Status free_memory ();

Status get_count (

10 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

out long count // number of entries in the list

);

};

Interface NVList is defined in the CORBA module.

4.4.1 create_list

This operation, which creates a pseudo-object, is defined in the ORB interface and excerpted below.

Status create_list (//PIDL

in long count, // number of items to allocate for list

out NVList new_list // newly created list

);

This operation allocates a list of the specified size, and clears it for initial use. List items may be added to
the list using the add_item routine. Alternatively, they may be added by indexing directly into the list
structure. A mixture of the two approaches for initializing a list, however, is not supported.

An NVList is a partially opaque structure. It may only be allocated via a call to create_list.

4.4.2 add_item

Status add_item (// PIDL

in Identifier item_name, // name of item

in TypeCode item_type, // item datatype

in void *value, // item value

in long value_len, // length of item value

in Flags item_flags // item flags

);

This operation adds a new item to the indicated list. The item is added after the previously added item.

In addition to the argument modes defined in Section 4.1.1, item_flags may also take the following flag
values: IN_COPY_VALUE, DEPENDENT_LIST. The argument passing flags defined in Section 4.1.1
may be used here to indicate the intended parameter passing mode of an argument.

11 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

If the IN_COPY_VALUE flag is set, a copy of the argument value is made and used instead.

If a list structure is added as an item (e.g. a "sublist") the DEPENDENT_LIST flag may be specified to
indicate that the sublist should be freed when the parent list is freed.

4.4.3 free

Status free (); // PIDL

This operation frees the list structure and any associated memory (an implicit call to the list free_memory
operation is done).

4.4.4 free_memory

Status free_memory (); // PIDL

This operation frees any dynamically allocated out-arg memory associated with the list. The list structure
itself is not freed.

4.4.5 get_count

Status get_count (// PIDL

out long count // number of entries in the list

);

This operation returns the total number of items allocated for this list.

4.4.6 create_operation_list

This operation, which creates a pseudo-object, is defined in the ORB interface.

Status create_operation_list (// PIDL

in OperationDef oper, // operation

out NVList new_list // argument definitions

);

This operation returns an NVList initialized with the argument descriptions for a given operation. The
information is returned in a form that may be used in Dynamic Invocation requests. The arguments are
returned in the same order as they were defined for the operation.

The list free operation is used to free the returned information.

12 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

4.5 Context Objects
A context object contains a list of properties, each consisting of a name and a string value associated with
that name. By convention, context properties represent information about the client, environment, or
circumstances of a request that are inconvenient to pass as parameters.

Context properties can represent a portion of a client's or application's environment that is meant be
propagated to (and made implicitly part of) a server's environment (for example, a window identifier, or
user preference information). Once a server has been invoked (i.e., after the properties are propagated),
the server may query its context object for these properties.

In addition, the context associated with a particular operation is passed as a distinguished parameter,
allowing particular ORBs to take advantage of context properties, for example, using the values of
certain properties to influence method binding behavior, server location, or activation policy.

An operation definition may contain a clause specifying those context properties that may be of interest to
a particular operation. These context properties comprise the minimum set of properties that will be
propagated to the server's environment (although a specified property may have no value associated with
it). The ORB may choose to pass more properties than those specified in the operation declaration.

When a context clause is present on an operation declaration, an additional argument is added to the stub
and skeleton interfaces. When an operation invocation occurs via either the stub or Dynamic Invocation
interface, the ORB causes the properties which were named in the operation definition in IDL and which
are present in the client's context object, to be provided in the context object parameter to the invoked
method.

Context property names (which are strings) typically have the form of an OMG IDL identifier, or a series
of OMG IDL identifiers separated by periods. A context property name pattern is either a property name,
or a property name followed by a single "*". Property name patterns are used in the context clause of an
operation definition, and in the get_values operation (described below).

A property name pattern without a trailing "*" is said to match only itself. A property name pattern of the
form "<name>*" matches any property name that starts with <name> and continues with zero or more
additional characters.

Context objects may be created and deleted, and individual context properties may be set and retrieved.
There will often be context objects associated with particular processes, users, or other things depending
on the operating system, and there may be conventions for having them supplied to calls by default.

It may be possible to keep context information in persistent implementations of context objects, while
other implementations may be transient. The creation and modification of persistent context objects,
however, is not addressed in this specification.

Context objects may be "chained" together to achieve a particular defaulting behavior.

Properties defined in a particular context object effectively override those properties in the next higher
level. This searching behavior may be restricted by specifying the appropriate scope and the "restrict
scope" option on the Context get_values call.

13 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

Context objects may be named for purposes of specifying a starting search scope.

4.6 Context Object Operations
When performing operations on a context object, properties are represented as named value lists. Each
property value corresponds to a named value item in the list.

A property name is represented by a string of characters (see "Identifiers" on page 3-5 for the valid set of
characters that are allowed). Property names are stored preserving their case, however names cannot
differ simply by their case.

The Context interface is shown below.

module CORBA {

interface Context { // PIDL

Status set_one_value (

in Identifier prop_name, // property name to add

in string value // property value to add

);

Status set_values (

in NVList values // property values to be changed

);

Status get_values (

in Identifier start_scope, // search scope

in Flags op_flags, // operation flags

in Identifier prop_name, // name of property(s) to retrieve

out NVList values // requested property(s)

);

Status delete_values (

in Identifier prop_name // name of property(s) to delete

14 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

);

Status create_child (

in Identifier ctx_name, // name of context object

out Context child_ctx // newly created context object

);

Status delete (

in Flags del_flags // flags controlling deletion

);

};

};

4.6.1 get_default_context

This operation, which creates a Context pseudo-object, is defined in the ORB interface (see Section 7.1
for the complete ORB definition).

Status get_default_context (// PIDL

out Context ctx // context object

);

This operation returns a reference to the default process context object. The default context object may
be chained into other context objects. For example, an ORB implementation may chain the default
context object into its User, Group, and System context objects.

4.6.2 set_one_value

Status set_one_value (// PIDL

in Identifier prop_name, // property name to add

in string value // property value to add

);

This operation sets a single context object property.

Currently, only string values are supported by the context object.

15 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

4.6.3 set_values

Status set_values (// PIDL

in NVList values // property values to be changed

);

This operation sets one or more property values in the context object. In the NVList, the flags field must
be set to zero, and the TypeCode field associated with an attribute value must be TC_string.

Currently, only string values are supported by the context object.

4.6.4 get_values

Status get_values (// PIDL

in Identifier start_scope, // search scope

in Flags op_flags, // operation flags

in Identifier prop_name, // name of property(s) to retrieve

out NVList values // requested property(s)

);

This operation retrieves the specified context property value(s). If prop_name has a trailing wildcard
character ("*"), then all matching properties and their values are returned. The values returned may be
freed by a call to the list free operation.

If no properties are found an error is returned, and no property list is returned.

Scope indicates the context object level at which to initiate the search for the specified properties (e.g.
"_USER", "_SYSTEM"). If the property is not found at the indicated level, the search continues up the
context object tree until a match is found or all context objects in the chain have been exhausted.

Valid scope names are implementation-specific.

If scope name is omitted, the search begins with the specified context object. If the specified scope name
is not found, an exception is returned.

The following operation flags may be specified:

CORBA::CTX_RESTRICT_SCOPE Searching is limited to the specified search scope or context
object.

16 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

4.6.5 delete_values

Status delete_values (// PIDL

in Identifier prop_name // name of property(s) to delete

);

This operation deletes the specified property value(s) values from the context object. If prop_name has a
trailing wildcard character ("*"), then all property names that match will be deleted.

Search scope is always limited to the specified context object.

If no matching property is found, an exception is returned.

4.6.6 create_child

Status create_child (// PIDL

in Identifier ctx_name, // name of context object

out Context child_ctx // newly created context object

);

This operation creates a child context object.

The returned context object is chained into its parent context. That is, searches on the child context
object will look in the parent context (and so on, up the context tree), if necessary, for matching property
names.

Context object names follow the rules for OMG IDL identifiers (see "Identifiers" on page 3-5).

4.6.7 delete

Status delete (// PIDL

in Flags del_flags // flags controlling deletion

);

This operation deletes the indicated context object.

The following option flags may be specified:

CORBA::CTX_DELETE_DESCENDENTS Deletes the indicated context object and all of its
descendent context objects, as well.

17 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

An exception is returned if there are one or more child context objects and the
CTX_DELETE_DESCENDENTS flag was not set.

4.7 Native Data Manipulation
A future version of this specification will define routines to facilitate the conversion of data between the
list layout found in NVList structures and the compiler native layout.

[Top] [Prev] [Next] [Bottom]

pubs@omg.org
Copyright © 1995, Object Management Group. All rights reserved.

18 of 18 9/3/99 11:35 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/dii2.htm

