
[Top] [Prev] [Next] [Bottom] 

The Object Model

1 

This chapter describes the concrete object model that underlies the CORBA architecture. The model is
derived from the abstract Core Object Model defined by the Object Management Group in the Object
Management Architecture Guide. (Information about the OMA Guide and other books in the CORBA
documentation set is provided in this document's preface.)

1.1 Overview
The object model provides an organized presentation of object concepts and terminology. It defines a
partial model for computation that embodies the key characteristics of objects as realized by the
submitted technologies. The OMG object model is abstract in that it is not directly realized by any
particular technology. The model described here is a concrete object model. A concrete object model may
differ from the abstract object model in several ways:

It may elaborate the abstract object model by making it more specific, for example, by defining the
form of request parameters or the language used to specify types 
It may populate the model by introducing specific instances of entities defined by the model, for
example, specific objects, specific operations, or specific types 
It may restrict the model by eliminating entities or placing additional restrictions on their use 

An object system is a collection of objects that isolates the requestors of services (clients) from the
providers of services by a well-defined encapsulating interface. In particular, clients are isolated from the
implementations of services as data representations and executable code.

The object model first describes concepts that are meaningful to clients, including such concepts as object
creation and identity, requests and operations, types and signatures. It then describes concepts related to
object implementations, including such concepts as methods, execution engines, and activation.

The object model is most specific and prescriptive in defining concepts meaningful to clients. The
discussion of object implementation is more suggestive, with the intent of allowing maximal freedom for
different object technologies to provide different ways of implementing objects. 

There are some other characteristics of object systems that are outside the scope of the object model.
Some of these concepts are aspects of application architecture, some are associated with specific domains
to which object technology is applied. Such concepts are more properly dealt with in an architectural
reference model. Examples of excluded concepts are compound objects, links, copying of objects, change
management, and transactions. Also outside the scope of the object model is the model of control and

1 of 7 9/3/99 11:31 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/obmod2.htm



execution.

This object model is an example of a classical object model, where a client sends a message to an object.
Conceptually, the object interprets the message to decide what service to perform. In the classical model,
a message identifies an object and zero or more actual parameters. As in most classical object models, a
distinguished first parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified operation. Operationally,
of course, method selection could be performed either by the object or the ORB.

1.2 Object Semantics
An object system provides services to clients. A client of a service is any entity capable of requesting the
service.

This section defines the concepts associated with object semantics, that is, the concepts relevant to
clients.

1.2.1 Objects

An object system includes entities known as objects. An object is an identifiable, encapsulated entity that
provides one or more services that can be requested by a client.

1.2.2 Requests

Clients request services by issuing requests. A request is an event, i.e. something that occurs at a
particular time. The information associated with a request consists of an operation, a target object, zero
or more (actual) parameters, and an optional request context.

A request form is a description or pattern that can be evaluated or performed multiple times to cause the
issuing of requests. As described in the OMG IDL Syntax and Semantics chapter, request forms are
defined by particular language bindings. An alternative request form consists of calls to the dynamic
invocation interface to create an invocation structure, add arguments to the invocation structure, and to
issue the invocation (Refer to the C Language Mapping chapter and the Dynamic Invocation Interface
chapter for descriptions of these request forms). 

A value is anything that may be a legitimate (actual) parameter in a request. A value may identify an
object, for the purpose of performing the request. A value that identifies an object is called an object
name. More particularly, a value is an instance of an OMG IDL datatype.

An object reference is an object name that reliably denotes a particular object. Specifically, an object
reference will identify the same object each time the reference is used in a request (subject to certain
pragmatic limits of space and time). An object may be denoted by multiple, distinct object references. 

A request may have parameters that are used to pass data to the target object; it may also have a request
context which provides additional information about the request. 

A request causes a service to be performed on behalf of the client. One outcome of performing a service

2 of 7 9/3/99 11:31 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/obmod2.htm



is returning to the client the results, if any, defined for the request. 

If an abnormal condition occurs during the performance of a request, an exception is returned. The
exception may carry additional return parameters particular to that exception.

The request parameters are identified by position. A parameter may be an input parameter, an output
parameter, or an input-output parameter. A request may also return a single result value, as well as any
output parameters.

The following semantics hold for all requests:

Any aliasing of parameter values is neither guaranteed removed nor guaranteed to be preserved 
The order in which aliased output parameters are written is not guaranteed 
Any output parameters are undefined if an exception is returned 
The values that can be returned in an input-output parameter may be constrained by the value that
was input 

Descriptions of the values and exceptions that are permitted, see Types on page 1-4 and Exceptions on
page 1-6. 

1.2.3 Object Creation and Destruction

Objects can be created and destroyed. From a client's point of view, there is no special mechanism for
creating or destroying an object. Objects are created and destroyed as an outcome of issuing requests.
The outcome of object creation is revealed to the client in the form of an object reference that denotes the
new object.

1.2.4 Types

A type is an identifiable entity with an associated predicate (a single-argument mathematical function with
a boolean result) defined over values. A value satisfies a type if the predicate is true for that value. A
value that satisfies a type is called a member of the type.

Types are used in signatures to restrict a possible parameter or to characterize a possible result.

The extension of a type is the set of values that satisfy the type at any particular time.

An object type is a type whose members are objects (literally, values that identify objects). In other
words, an object type is satisfied only by (values that identify) objects.

Constraints on the data types in this model are shown in this section.

Basic types:

16-bit and 32-bit signed and unsigned 2's complement integers 
32-bit and 64-bit IEEE floating point numbers 
Characters, as defined in ISO Latin-1 (8859.1) 
A boolean type taking the values TRUE and FALSE 

3 of 7 9/3/99 11:31 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/obmod2.htm



An 8-bit opaque datatype, guaranteed to not undergo any conversion during transfer between
systems 
Enumerated types consisting of ordered sequences of identifiers 
A string type which consists of a variable-length array of characters; the length of the string is
available at runtime 
A type "any" which can represent any possible basic or constructed type 

Constructed types:

A record type (called struct), consisting of an ordered set of (name,value) pairs 
A discriminated union type, consisting of a discriminator followed by an instance of a type
appropriate to the discriminator value 
A sequence type which consists of a variable-length array of a single type; the length of the sequence
is available at runtime 
An array type which consists of a fixed-length array of a single type 
An interface type, which specifies the set of operations which an instance of that type must support 

Values in a request are restricted to values that satisfy these type constraints. The legal values are shown
in FIG. 1 on page 1-5. No particular representation for values is defined.

FIG. 1 Legal Values

1.2.5 Interfaces

An interface is a description of a set of possible operations that a client may request of an object. An
object satisfies an interface if it can be specified as the target object in each potential request described by
the interface.

An interface type is a type that is satisfied by any object (literally, any value that identifies an object) that
satisfies a particular interface.

Interfaces are specified in OMG IDL. Interface inheritance provides the composition mechanism for
permitting an object to support multiple interfaces. The principal interface is simply the most-specific
interface that the object supports, and consists of all operations in the transitive closure of the interface
inheritance graph.

1.2.6 Operations

An operation is an identifiable entity that denotes a service that can be requested.

An operation is identified by an operation identifier. An operation is not a value. 

4 of 7 9/3/99 11:31 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/obmod2.htm



An operation has a signature that describes the legitimate values of request parameters and returned
results. In particular, a signature consists of:

A specification of the parameters required in requests for that operation 
A specification of the result of the operation 
A specification of the exceptions that may be raised by a request for the operation and the types of
the parameters accompanying them 
A specification of additional contextual information that may affect the request 
An indication of the execution semantics the client should expect from a request for the operation 

Operations are (potentially) generic, meaning that a single operation can be uniformly requested on
objects with different implementations, possibly resulting in observably different behavior. Genericity is
achieved in this model via interface inheritance in IDL and the total decoupling of implementation from
interface specification.

The general form for an operation signature is:

[oneway] <op_type_spec> <identifier> (param1, ..., paramL)

[raises(except1,...,exceptN)] [context(name1, ..., nameM)]

where:

The optional oneway keyword indicates that best-effort semantics are expected of requests for this
operation; the default semantics are exactly-once if the operation successfully returns results or
at-most-once if an exception is returned 
The <op_type_spec> is the type of the return result 
The <identifier> provides a name for the operation in the interface. 
The operation parameters needed for the operation; they are flagged with the modifiers in, out, or
inout to indicate the direction in which the information flows (with respect to the object performing
the request) 
The optional raises expression indicates which user-defined exceptions can be signalled to terminate
a request for this operation; if such an expression is not provided, no user-defined exceptions will be
signalled 
The optional context expression indicates which request context information will be available to the
object implementation; no other contextual information is required to be transported with the
request 

Parameters

A parameter is characterized by its mode and its type. The mode indicates whether the value should be
passed from client to server (in), from server to client (out), or both (inout). The parameter's type
constrains the possible value which may be passed in the directions dictated by the mode.

Return Result

The return result is a distinguished out parameter.

Exceptions

5 of 7 9/3/99 11:31 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/obmod2.htm



An exception is an indication that an operation request was not performed successfully. An exception
may be accompanied by additional, exception-specific information.

The additional, exception-specific information is a specialized form of record. As a record, it may consist
of any of the types described in Section 1.2.4.

All signatures implicitly include the standard exceptions described in Section 3.15, "Standard
Exceptions," on page 3-33.

Contexts

A request context provides additional, operation-specific information that may affect the performance of a
request.

Execution Semantics

Two styles of execution semantics are defined by the object model:

At-most-once: if an operation request returns successfully, it was performed exactly once; if it
returns an exception indication, it was performed at-most-once; 
Best-effort: a best-effort operation is a request-only operation, i.e. it cannot return any results and
the requester never synchronizes with the completion, if any, of the request. 

The execution semantics to be expected is associated with an operation. This prevents a client and object
implementation from assuming different execution semantics.

Note that a client is able to invoke an at-most-once operation in a synchronous or deferred-synchronous
manner.

1.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair of accessor
functions: one to retrieve the value of the attribute and one to set the value of the attribute.

An attribute may be read-only, in which case only the retrieval accessor function is defined.

1.3 Object Implementation
This section defines the concepts associated with object implementation, i.e. the concepts relevant to
realizing the behavior of objects in a computational system.

The implementation of an object system carries out the computational activities needed to effect the
behavior of requested services. These activities may include computing the result of the request and
updating the system state. In the process, additional requests may be issued.

The implementation model consists of two parts: the execution model and the construction model. The
execution model describes how services are performed. The construction model describes how services

6 of 7 9/3/99 11:31 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/obmod2.htm



are defined.

1.3.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing code that operates upon some
data. The data represents a component of the state of the computational system. The code performs the
requested service, which may change the state of the system.

Code that is executed to perform a service is called a method. A method is an immutable description of a
computation that can be interpreted by an execution engine. A method has an immutable attribute called a
method format that defines the set of execution engines that can interpret the method. An execution
engine is an abstract machine (not a program) that can interpret methods of certain formats, causing the
described computations to be performed. An execution engine defines a dynamic context for the
execution of a method. The execution of a method is called a method activation.

When a client issues a request, a method of the target object is called. The input parameters passed by the
requestor are passed to the method and the output parameters and return value (or exception and its
parameters) are passed back to the requestor.

Performing a requested service causes a method to execute that may operate upon an object's persistent
state. If the persistent form of the method or state is not accessible to the execution engine, it may be
necessary to first copy the method or state into an execution context. This process is called activation;
the reverse process is called deactivation.

1.3.2 The Construction Model

A computational object system must provide mechanisms for realizing behavior of requests. These
mechanisms include definitions of object state, definitions of methods, and definitions of how the object
infrastructure is to select the methods to execute and to select the relevant portions of object state to be
made accessible to the methods. Mechanisms must also be provided to describe the concrete actions
associated with object creation, such as association of the new object with appropriate methods.

An object implementation-or implementation, for short-is a definition that provides the information
needed to create an object and to allow the object to participate in providing an appropriate set of
services. An implementation typically includes, among other things, definitions of the methods that
operate upon the state of an object. It also typically includes information about the intended type of the
object.

[Top] [Prev] [Next] [Bottom] 

pubs@omg.org 
Copyright © 1995, Object Management Group. All rights reserved. 

7 of 7 9/3/99 11:31 PM

http://www.infosys.tuwien.ac.at/Research/Corba/OMG/obmod2.htm


