
Abstract

This paper presents a hierarchical hybrid system modeling
and simulation framework using the Ptolemy II environ-
ment. Ptolemy II is a system-level design tool that supports
the integration of multiple models of computation. The
modeling of hierarchical hybrid systems is achieved by
combining continuous-time models with finite state autom-
ata. Breakpoint handling, event detection and invariant
monitoring techniques are studied. A hybrid helicopter con-
trol system is simulated as an example.

1. Introduction

Hybrid systems have been intensively studied in the past
few years both for their rigorous mathematical foundations
[2], [7], [12] and for engineering designs [3], [8]. There is a
strong demand for computer aided design and simulation
tools that can help validate hybrid systems. A few hybrid
system simulation tools are available [1], [4], [17], [18], but
most of them only support a subset of the requirements for
hybrid simulation [14], [10]. Our approach is based on a
hierarchical assembly of heterogeneous components, which
can efficiently capture the hybrid automata model of hybrid
systems, and the approach extensively supports the interac-
tion of continuous and discrete dynamics.

We start with the hybrid I/O automaton [13] view of hybrid
systems, by defining a “open”  hybrid automaton  as

, (1)
where
•  is a set of discrete variables;
•  is a set of continuous variables;
•  is a set of input variables, continuous or discrete;
•  is a set of output variables, continuous or discrete;
•  is a set of initial states;
•  is a vector field;
•  is an output map (note that we do not

restrict  to be only a function of  and );
•  assigns to each discrete state

 an invariant set;
•  is a collection of discrete transitions;
•  assigns to each  a guard;
•  assigns to each , , and

 a reset relation.

In the definition,  is the power set of , and  is the
tangential space of . 

We refer to  as the (hybrid) state of ,
 as the input of , and  as the output of .

For the sake of simplicity, we sometimes use  to
denote . And we assume  is globally Lips-
chitz continuous in its arguments.

The composition of two hybrid I/O automata is, roughly, to
connect some inputs/outputs of one hybrid automaton with
some outputs/inputs of another. The remaining inputs and
outputs are the inputs and outputs of the composed automa-
ton. For a formal definition of the composability and com-
position of hybrid I/O automata, please refer to [13].

A hybrid time trajectory  is defined [12] to be a finite or
infinite sequence of intervals of real, , where  is
a natural number. It satisfies the following conditions:
•  is closed for each , unless  is a finite sequence and

 is the last interval, in which case it is left closed but
can be right open.

• Let . Then for all , , and for all
, .

We denote by  the set of all hybrid time trajectories.

An execution  of a hybrid automaton  is defined [12] as
a collection  with , ,

, , and  satisfying:
• (initial condition) ;
• (continuous evolution) , with , , , , and  

are continuous over , and , 
, and 
;

• (discrete evolution) , , 
, and 

; and
• (output evaluation) .
Intuitively, an execution of a hybrid automaton starts from
an initial state, runs the continuous dynamic for a while,
makes a discrete state transition, and then runs (another)
continuous dynamic for another period of time, and so on.
To simulate hybrid systems, we want to compute the execu-
tion  (or its approximation within an error tolerance). 

In this paper, we introduce Ptolemy II [5], a system-level
design environment, and show how hybrid system simula-
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tion can be performed in it. In the environment, hybrid I/O
automata are modeled using hierarchical composition of
finite automata (FA) and continuous-time (CT) systems.
The arbitrarily deep hierarchical nesting of continuous sys-
tems and discrete automata makes the model handled by
Ptolemy II somewhat more general than that given in (1).
The continuous simulation techniques implemented in
Ptolemy II has the idea of breakpoint handling integrated.
The breakpoint handling mechanism significantly empow-
ers the continuous simulation such that requirements of
hybrid simulation, like integration step control, event detec-
tion, and invariant monitoring are easily supported. 

We give the hierarchical model of hybrid systems in section
2. The continuous-time simulation techniques are discussed
in section 3. Invariant monitoring and event generation
mechanisms are presented in section 4. The simulation con-
trol of continuous dynamics and discrete state transitions is
described in section 5. As a case study, a 2-D helicopter
with a hybrid controller is simulated.

2. Hierarchical Hybrid Automata Modeling

Ptolemy II models the hierarchical organization of a system
using the container-containee relationship. The top-level
system model consists of a set of executable entities called
actors. Each actor models a sub-system. Actors can be
atomic or composite, where a composite actor can in turn
contain a set of actors. This hierarchical nesting can be
extended to arbitrary levels. An actor communicates with
the rest of the system through a set of input and output
ports. The messages passing among the ports are encapsu-
lated in tokens. This modeling mechanism is close to the
intuitive representations of systems and maximizes the
information hiding of components.

2.1. Modeling Automata

A finite state automaton in Ptolemy II is specified using the
usual bubble-and-arc graph as illustrated in Figure 1. The
guard condition and reset relation on a transition can refer
to the inputs to the hybrid automaton and the outputs from
the continuous dynamics of the source state of the transi-
tion. Ptolemy II provides a powerful and extensible expres-
sion language for specifying guards and reset relations.

2.2. Modeling Continuous Dynamics

In each discrete state  of a hybrid automaton, there is an
“open” continuous subsystem with the form of a set of ordi-
nary differential equations (ODEs):

(2)

In Ptolemy II, we use a signal-flow model to represent a
continuous time (sub)system [9], which means that each
component in the system is a function that maps input sig-
nals to output signals, and the components communicate
via continuous-time signals. For example, the system in (2)
is built by integrators with feedback, as shown in Figure 2.
The states of the system are the outputs of the integrators.

2.3. Hierarchical Hybrid Automata

In our approach, a hybrid automaton model is a composite
actor containing a finite state automaton actor modeling the
discrete dynamics, and a set of composite actors modeling
the continuous dynamics of the states. The top level is a
continuous-time system, where one or more components
are composite actors. These composite actors implement
finite state automata internally. Each state of the automaton
is further refined by either another layer of automaton or a
continuous-time subsystem. This hierarchy can be further
nested until all subsystems are refined by a continuous-time
subsystem, as illustrated in Figure 3.

3. Simulating Continuous Dynamics

In a hybrid system, when there is no discrete state transi-
tion, the entire system can be flattened into a CT system,
captured by a set of ODEs. The task of a simulator is to
solve the set of ODEs numerically, that is, discretizing time
into discrete points, and finding the behavior of the system
(values of all state variables) at those points. How time is
discretized depends largely on the speed and accuracy
requirements of the simulation, and, in hybrid systems, on
the occurrence of state transitions as well. 

In the signal-flow representation, numerical ODE solving
methods can be performed by executing certain (chain of)
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 Figure 1. A finite state I/O automaton.
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actors in a particular order. For example, at a discrete state
 the forward Euler method has the form 

, (3)

where  is the (computed) state at time  (distinguishing
itself from the “real” state ) and  is the integration
step size. So at time , the integrator emits its state . This
token, together with the input token , are consumed by
the actor , and it produces the derivative of , i.e.

. The derivative is consumed by the integrator,
and by using (3), the new state  is obtained. Other inte-
gration methods, like linear multistep (LMS) methods and
Runge-Kutta (RK) methods, are similarly accomplished. 

3.1. Integration Step Size Control

Choosing the right time points to approximate a continuous
time system behavior is one of the major tasks of continu-
ous-time simulation. There are three factors that may
impact the choice of the step size. 
• Error control. For numerical integration methods, the

local error at time  is defined as a vector norm (say,
the 2-norm) of the difference between the actual solution

 and the approximation  calculated by the inte-
gration method, given that the last step is accurate. That
is, assuming  then

. (4)

It can be shown [6] that by carefully choosing the param-
eters in the integration methods, the local error can be
made such that , where r, an integer
closely related to the number of function evaluation in
one integration step, is called the order of the integration
method. Therefore, in order to achieve an accurate solu-
tion, we want high order integration methods and small
step sizes. But, a high order method means more function
evaluations per step, and small step sizes lead to more
integration steps, both resulting in a longer simulation
time. In general, the choice of integration methods and
step sizes reflects the trade-off between speed and accu-
racy of a simulation.

• Convergence. Implicit ODE solving methods convert the
ODEs to a set of algebraic equations and solve them
using Newton-Raphson method or contraction mapping
iterations [15]. Both methods are fixed-point iteration
based, and the convergence requires the step size to be
small and the initial guess to be relatively accurate. 

• Breakpoints. Breakpoints are the time points where the
vector field  is not continuous. This may be the result of

 itself, the discontinuity of the input signals , or dis-
crete state transitions. In general, the solutions at these
points are not well defined. But the left and right limits
are. So instead of solving the ODE at those points, we
would actually try to find the left and right limit. In addi-
tion, the numerical integration formula is not applicable
when the integration step crosses breakpoints. After each
breakpoint, the integration process should be reinitialized
as if it is the beginning of the simulation. How the break-

points are detected and handled is key for hybrid system
simulation.

3.2. Breakpoints Handling

We classify two kinds of breakpoints, predictable ones and
unpredictable ones. Predictable breakpoints are the break-
points that are known (exactly) beforehand. For example, a
square wave source actor can predict its next flip time. This
information is used to control the discretization of time.
Predictable breakpoints are stored chronologically in a
breakpoint table. Before each integration step, say from 
to  (  is determined by error control and convergence
concerns), the breakpoint table will be examined. If there is
a breakpoint at , where , then the step size will
be reduced to . After the integration is finished, we have
obtained the left limit of  at .

An unpredictable breakpoint is unknown until the time it
occurs. For example, an actor that varies its functionality
when the input signal crosses a threshold can only report a
“missed” breakpoint after an integration step has finished.
Unpredictable breakpoints are handled by querying actors
after each integration step. If all the actors report that this
step is acceptable, then the integration continues; other-
wise, the actors are asked for a refined step size, which is
the step size that the actor estimates to locate the break-
point. This process is iterated until the breakpoint is found
“accurately” within an error tolerance. 

4. Invariant Monitors and Event Generation

A hybrid automaton will take a transition from one discrete
state  to another discrete state  at time  if one of the
followings is true:
1.)  is the first time in some  such that the invariant at

state  is violated. I.e. , such that ,
, but

; (5)

2.) one of the guards from  is enabled, i.e. 

 , s.t. . (6)
Note that when condition (5) is true, the transition is forced
to be taken, and if (6) is true, the transition is optional. In
the latter case, the system has a nondeterministic behavior.

Conditions (5) and (6) are detected in a continuous sub-
system, and it relies on the automaton super-system to
decide whether to take the transition. The test of the condi-
tions is achieved by invariant monitors. Invariant monitors
are actors that consume continuous waveforms and produce
events that can trigger state transitions. Consider the invari-
ant condition with the form 

(7)
which has the “boundary” condition:

. (8)
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(More complex conditions can be modeled by the logical
combination of inequalities like (7).) We need to find the
exact time point where (8) is true, given that the previous
trajectory satisfies (7). This is handled by the breakpoint
mechanism.

4.1. Predictable Event Generation

If  in (8) is only a function of time, (the event of this type
is called a time event) then we know the exact state transi-
tion time before the simulation actually reaches that time.
In this case, the state transition time is simply registered as
a predictable breakpoint. Since the breakpoint table mecha-
nism can guarantee that the simulation will not miss any
predictable breakpoint during the execution, the invariant
monitor can emit the triggered event at the desired time. 

4.2. Unpredictable Event Detection

If  in (8) is also a function of  and , (the event of
this type is called a state event) then it is, in general, impos-
sible to know the exact time that (8) is true beforehand.
This is the situation of an unpredictable breakpoint. The
approach we take here is to make the invariant monitor
report a missed event to the simulator if one integration step
has crossed the invariant set boundary. After iteratively
refining the step sizes by numerical root finding techniques,
the accurate event time is found.

4.3. Nondeterministic Event Monitoring

A hybrid automaton may take a discrete state transition
whenever the guard expression evaluates to true. Since all
the outputs of a continuous subsystem are in the scope of
the expressions language of the guards, the automaton sys-
tem can evaluate the expression after each integration step.
In this case, it can take the state transition whenever a guard
is evaluated to true, but we do not specifically aim to find
the first time point that makes the guard true. 

One situation that must be taken care of occurs when the
guard has the form

. (9)
Denote by  the value of  at time . We
want to make sure that  does not leap over this region
in one integration step. This can be done by a threshold
monitor that calculates  after each integration step. If
after one integration step, it changes from  to

, or from  to , then it
should report a missed event and try to refine the step size
such that the end of the integration step falls into the region. 

Notice that the state trajectory and invariant/guard condi-
tions could be complicated functions of time. In general,
the numerical methods do not guarantee that they will find
all the possible discrete events. This is related to how the
models are built to support a good simulation.

5. Hybrid Execution Control

As discussed in the previous two sections, CT simulation in
Ptolemy II is capable of generating events and monitoring
invariants of continuous dynamics. This capability enables
the interaction of discrete and continuous dynamics and
makes the correct simulation of hybrid systems possible.

When simulating a hybrid system in Ptolemy II, the interac-
tion of discrete and continuous dynamics goes through the
following steps:
1.) During continuous evolution, the system is simulated

as a CT system where the hybrid automaton is replaced
by the continuous dynamics of its current state. The
discretization of time during the simulation is con-
trolled such that the time when the invariants is vio-
lated is located, and interval conditions of the form (9)
on the guards are not missed.

2.) At each discrete time point where the behavior of the
system is found, the guards on the transitions starting
from the current state are evaluated.

3.) If a transition is enabled, the hybrid automaton makes a
state transition. The continuous dynamics of the desti-
nation state is initialized by the reset relation on the
transition. The simulation continues from 1) with the
current time point treated as a breakpoint.

4.) If the invariant of the current state is violated or is
going to be violated at the current time, and no guard
on an outgoing transition is enabled, the simulation is
blocked.

For a deterministic hybrid automaton, the above simulation
scheme will calculate the execution for each initial condi-
tion within the precision of continuous-time simulation. For
non-deterministic automata, the execution also depends on
many other factors, which include the user’s choice of inte-
gration methods, the maximum and minimum step sizes,
and the error tolerance.

6. Case Study: A Helicopter Control System

In this section, we present a hybrid system which models a
high-attitude take-off process of a 2-D helicopter. The
hybrid control sequence is motivated by helicopter pilot
flight instructions [16]. 

6.1. A 2-D Helicopter Model

A 2-D model of a helicopter is extracted from [8]. The
motion along longitudinal and vertical axes is considered.
The x, z-axes of the spatial frame are pointing north and
down. The body x-axis is defined from the center of gravity
to the nose of the helicopter, and body z-axis is pointing
down from the center of gravity (CG). The motion of the
helicopter is controlled by , the main rotor thrust, and

, the longitudinal tilt path angle. The state variables are
, , and , which are the position on the x-axis, z-axis,

and the pitch angle, respectively. The equations of the
motion can be expressed as:

ϕ
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(10)

(11)

where  is the moment of inertia about body y-axis; 
is the hub pitching moment stiffness; and  is the vertical
distance between the main rotor and the CG. The state and
input vectors are defined as  and

, respectively.

6.2. Flight Modes

Flight modes [9] represent different modes of operation of
the helicopter and they correspond to controlling different
variables in the dynamic. We define the following flight
modes: Hover, Cruise, Acc/ALH, Dec/ALH, Climb, and
Descend, where ALH stands for “ALtitude Hold.”

6.3. Flight Mode Controller

The flight mode controller is based on approximate feed-
back linearization. We assume that full states are accessible
for control purpose. The controller has the following form:

. (12)

Hence, the resulting closed-loop system becomes

. (13)

In each flight mode, there is a set of control outputs defined
and a corresponding regulator is designed. Given a setpoint
for each output, we have the corresponding controllers:

(14)

for . Thus the feedback linearization controller has
the form, , where . The inputs and
outputs of the controllers in each mode are summarized in
the following table.

6.4. Flight Mode Switching

We simulate a high-attitude take-off process where the heli-
copter climbs from 2m to 10m with maximum speed 5m/s
and climbing angle . It has successively the following
flight modes: Hover, Acc, Cruise, Climb, and Cruise. An
automaton for mode switching is shown in Figure 4.

In the automaton,  is the pilot input event that starts the
climbing action;

; (15)

; (16)

, (17)

where total velocity , and flight path angle

.

6.5. Modeling The Helicopter in Ptolemy II

The hybrid system is modeled in Ptolemy II as Figure 5.
The system has three levels of hierarchy. The top level is a
continuous time system, with a hybrid controller. The con-
troller implements the automaton that controls the switch-
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 Figure 4. Flight mode switches.
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 Figure 5. The helicopter model in Ptolemy II
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ing of flight modes. In each flight mode, there is a concrete
controller that computes the control output given the state
of the helicopter. The simulation runs as a Java applet1, and
the result is shown in Figure 6.

7. Conclusion

This paper describes hybrid system modeling in the
Ptolemy II environment. Hybrid systems are modeled hier-
archically in Ptolemy II using finite state automata and con-
tinuous dynamical systems. The simulation techniques of
both domains are studied. Event detection and invariant
monitoring are achieved by breakpoint handling and inte-
gration step size control. A hierarchical helicopter control
system is simulated as a case study.
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 Figure 6. The result of the simulation.


