
Modeling Urgency in Timed Systems
?

S�ebastien Bornot, Joseph Sifakis and Stavros Tripakis

Verimag

Centre �Equation, 2, rue de Vignate, 38610, Gi�eres, France

E-mail: fbornot,sifakis,tripakisg@imag.fr

1 Introduction

Timed systems can be modeled as automata (or, generally, discrete transi-

tion structures) extended with real-valued variables (clocks) measuring the time

elapsed since their initialization. The following features are also common in the

above models.

{ States are associated with time progress conditions specifying how time can

advance. Time can progress at a state by t only if all the intermediate states

reached satisfy the associated time progress condition.

{ At transitions, clock values can be tested and modi�ed. This is usually done

by associating with transitions guards (conditions on clocks) and assign-

ments. If a guard is true from an automaton state and a given clock valu-

ation, the corresponding transition can be executed by modifying clocks as

speci�ed by the corresponding assignment.

Time progress conditions can be used to specify urgency of transitions. Max-

imal urgency is achieved at a state if the corresponding time progress condition

is equal to the negation of the disjunction of the guards of the transitions is-

sued from this state. This implies that waiting at the state is allowed only if

there is no enabled transition. As soon as a transition is enabled, time cannot

progress anymore and the execution of the enabled transition(s) is enforced.

Minimal urgency is achieved at a state when the corresponding time progress

condition is true which implies that time can advance forever from this state

and consequently inde�nite waiting is allowed.

Choosing appropriate time progress conditions for complex system speci�ca-

tions is not a trivial problem as it is claimed in [SY96,BS97b,BS97a]. In many

papers, time progress conditions have been de�ned as invariants that must be

continuously true by clock valuations at the corresponding states. This implies

that when a state is reached the associated invariant must be satis�ed and makes

modeling of absolute urgency sometimes di�cult (for instance, in the case where

a transition must be executed as soon as it is enabled).

The problem of the de�nition and use of time progress conditions has been

tackled in [SY96,BS97b]. The purpose of this work is to show how the applica-

tion of results presented in [BS97b] leads to a modeling methodology for timed

? Presented in Compositionality, COMPOS'97. To appear as a LNCS volume.

systems. Emphasis is put on pragmatic and methodological issues. The basic

ideas are the following.

{ A timed system can be speci�ed as the composition of timed transitions.
The latter are transitions labeled, as usual, with guards and assignments

but also with deadlines, conditions on the clocks that characterize the states

at which the transition is enforced by stopping time progress. We require

that the deadline of a transition implies its guard, so that whenever time

progress is stopped the transition is enabled.

{ The guards and deadlines may contain formulas with past and future modal-

ities concerning the evolution of clock values at a state. The use of such

modalities does not increase the expressive power of the model but drasti-

cally enhances comfort in speci�cation.

The paper is organized as follows. In section 2 we de�ne Timed Automata

with Deadlines (TAD) which are a class of Timed Automata [ACD93,HNSY94]

where time progress conditions depend on deadlines associated with transitions.

We show that using TAD makes urgency speci�cation easier. In section 3 we

present the model of Petri Nets with Deadlines (PND), which are (1-safe) Petri

nets extended with clocks exactly as TAD are extensions of automata. We com-

pare PND with di�erent classes of Timed Petri Nets (TPNs) and show that safe

TPNs can be modeled as PND. Section 4 presents some applications to modeling

systems and in particular to modeling multimedia documents.

2 Timed Automata with Deadlines

2.1 De�nitions

De�nition 1 (Timed Automaton with Deadlines (TAD))
A TAD is :

{ A discrete labeled transition system (S;!; A) where

� S is a �nite set of discrete states

� A is a �nite vocabulary of actions

� !� S � A� S is a untimed transition relation

{ A set X = fx1; : : : ; xmg of real-valued variables called clocks with dom(xi) 2
R+.

{ A labeling function hmapping untimed transitions, elements of!, into timed
transitions: h(s; a; s0) = (s; (a; g; d; r); s0), where

� g, d are respectively the guard and the deadline of the transition. Guards
and deadlines are predicates p de�ned by the following grammar :

p ::= x#c j x� y#c j p ^ p j :p

where x; y 2 X, c is an integer and # 2 f�; <g. We assume that d) g.

� r � X is a set of clocks to be reset.

De�nition 2 (Semantics of a TAD)
A state of a TAD is a pair (s; v), where s 2 S is a discrete state and v 2 Rm

+

is a clock valuation. We associate with a TAD a transition relation !� (S �
Rm

+)� (A[R+)� (S�Rm
+). Transitions labeled by elements of A correspond to

discrete state changes while transitions labeled by non-negative reals correspond

to time steps.
Given s 2 S, if f(s; ai; si)gi2I is the set of all the transitions issued from s

and h(s; ai; si) = (s; (ai; gi; di; ri); si) then :

{ 8i 2 I 8v 2 R+ : (s; v)
ai! (si; v[ri]) if gi(v) where v[ri] is the variable

valuation obtained from v when all the clocks in ri are set at zero (and the

others left unchanged).

{ (s; v)
t
! (s; v + t) if 8t0 < t : cs(v + t0) where cs = :

W
i2I di and v + t is the

valuation obtained from v by increasing all the clock values by t.

We call cs the Time Progress Condition (TPC) associated with the discrete

state s.

We consider TAD such that for any state s the TPC cs is right-open.

2.2 About time-progress conditions

Notice that the simplest TAD is a single timed transition (s; (a; g; d; r); s0) with

untimed transition (s; a; s0), guard g, deadline d and reset set r. The guard g

characterizes the set of states from which the timed transition is possible while

the deadline d characterizes the subset of these states where the timed transition

is enforced by stopping time progress. The relative position of d with respect to

g determines the urgency of the action. For a given g, the corresponding d may

take two extreme values: �rst, d = g, meaning that the action is eager and,

second, d = f alse, meaning that the action is lazy . A particularly interesting

case is the one of a delayable action where d is the falling edge of a right-closed

guard g (cannot be disabled without enforcing its execution). The above cases

are illustrated in �gure 1.

The condition d) g guarantees that if time cannot progress at some state,

then at least one action is enabled from this state. Restriction to right-open

TPCs guarantees that deadlines can be reached by continuous time trajectories

and permits to avoid deadlock situations in the case of eager transitions. (For

instance, consider the case where d = g = x > 2, implying the TPC x � 2,

which is not right-open. Then, if x is initially 2, time cannot progress by any

delay t, according to de�nition 2.1 above. The guard g is not satis�ed either,

thus, the system is deadlocked.) The assumptions above ensure the property of

time reactivity , that is, time can progress at any state unless a untimed transition

is enabled.

Branching from a state s can be considered as a non-deterministic choice

operator between all the timed transitions issued from this state. The resulting

eagerd = g

delayabled = g #

lazyd = false

g

Fig. 1. Using deadlines to specify urgency.

untimed transition relation is the union of the untimed transition relations of the

combined timed transitions. The resulting time step relation is the intersection

of the time step relations of the combined timed transitions.

Compared to the Timed Automata (TA) model [HNSY94], TAD di�er in

that TPCs are not given explicitly but rather derived from the deadlines which

specify urgency of individual timed transitions. Thus, TAD are a subclass of TA

that are time-reactive.

We believe that using deadlines rather than directly TPCs allows an easier

modeling of urgency. Consider, for example, the TA in �gure 2 which di�er only

in their TPCs. Clearly, the TA (1) and (2) specify the same behavior when s

is reached with values x � 5. However, (1) does not satisfy the time reactivity

requirement and cannot be obtained from a TAD, while (2) can be obtained by

supposing that a is delayable (d1 = 5) and b is eager or delayable (d2 = 5). The

case (3) corresponds to eager actions a and b and (4) to lazy actions.

De�nition 3 (Urgency types)
For convenience, we replace explicit deadlines in transitions by the urgency types

, #, o, which are simply notations meaning that a transition is eager (d = g),

delayable (d = g #), lazy (d = f alse), respectively.

Notice that any TAD can be transformed into an equivalent TAD with only

eager and lazy transitions.

For complex systems, computation of TPCs from deadlines of transitions

may be useful as shown by the following example. In table 2.2 we give the TPCs

cs associated with state s (�gure 3) for di�erent types of urgency (

=eager, #
= delayable, o= lazy) of the transitions (s; a1; s1) and (s; a2; s2).

�2
�1 o #

o f alse x = 5 2 � x � 5

y = 7 y = 7 _ x = 5 y = 7 _ 2 � x � 5

4 � y � 7 4 � y � 7 _ x = 5 4 � y � 7 _ 2 � x � 5

x < 5

(1) (2)

x 6= 5

true

(4)(3)

x > 5

s1 s2

s

s1 s2

s

s1 s2

s

s1 s2

s

x � 5 x = 5
a b

x � 5 x = 5
ba

x � 5
a b

x = 5 x � 5
a b

x = 5

Fig. 2. Modeling urgency with TPCs.

s1 s2

s

a1 a2
4 � y � 72 � x � 5

Fig. 3. Computing TPCs.

Notice that the use of urgency types to induce deadlines could lead to right-

closed TPCs (for example, consider the case where a transition is eager and has

a left-open guard, say, 1 < x < 2). This can be avoided by ensuring that eager

transitions have always left-closed guards.

2.3 Priority Choice

It is often useful to consider that some priority is applied when from a state sev-

eral timed transitions are enabled. This amounts to taking the non-deterministic

choice between the considered transitions by adequately restricting the guards

of the transitions with lower priority.

Consider, for example, two timed transitions (s; (ai; gi; di; ri); si) for i = 1; 2

with a common source state s. If a1 has lower priority than a2 in the resulting

TAD the transition labeled by a2 does not change while the transition labeled

by a1 becomes (s; (a1; g
0
1; d

0
1; r1); s1) where g

0
1) g1 and d01 = d1 ^ g01.

Commonly, g01 is taken to be g1 ^ :g2, which means that whenever a1 and

a2 are simultaneously enabled, a1 is disabled in the prioritized choice. However,

for timed systems other ways to de�ne g01 are possible. One may want to prevent

action a1 to be executed if it is established that a2 will be eventually executed

within a given delay.

For this reason we need the following notations.

De�nition 4 (Modal operators)
Given a predicate p on X as in de�nition 2.1, we de�ne the modal operators

3�k p (\eventually p within k") and 3-�k p (\once p since k"), for k 2 R+[f1g.

3�k p (v) if 9t 2 R+ 0 � t � k: p(v + t)

3- �k p (v) if 9t 2 R+ 0 � t � k: 9v0 2 V: v = v0 + t ^ p(v0)

We write 3p and 3- p for 3�1 p and 3- �1 p, respectively, and 2p and 2- p for

:3:p and :3- :p, respectively.
Notice that modalities can be eliminated to obtain simple predicates without

quanti�ers. For example, 3(1 � x � 2) is equivalent to x � 2. For notational

convenience, we shall be using in the sequel guards and deadlines with modalities.

Coming back to the example above, we can take g01 = g1 ^ :3�kg2 or even

g01 = g1 ^2:g2. In the former case, a1 gives priority up to a2 if a2 is eventually

enabled within k time units. In the latter case, a1 is enabled if a2 is disabled

forever.

It is shown in [BS97b] that for timed systems it is possible to de�ne priority

choice operators applicable to a set of timed transitions and parameterized by

a priority relation < � A�R+ � A. If (a1; k; a2) 2 < (denoted a1 <k a2) then

the priority choice applied to a given set of timed transitions restricts the guard

g1 of a transition labeled by a1 so as to disable a1 whenever a2 is to be enabled

within k time units. In [BS97b] is is also shown that if the priority order satis�es

some \transitivity conditions" then the corresponding priority choice preserves

deadlock freedom in the following sense: If fgigi2I are the guards of a set of

timed transitions and fg0igi2I are the modi�ed guards obtained by application

of the priority-choice operator then 3
W
i2I gi � 3

W
i2I g

0
i and 3gi) 3(g0i _W

9k:ai<kaj
g0j). The latter property says that if from a state the i-th transition is

eventually enabled in the non-deterministic choice, then in the prioritized choice,

either the i-th transition will be eventually enabled, or some transition of higher

priority.

Let us illustrate the above ideas with an example. Consider the priority

choice between two timed transitions with respective labels (ai; gi; di; ri), i = 1; 2,

such that a1 has lower priority than a2, where g1 = 0 � x � 4 _ x � 6 and

g2 = 2 � x � 7 for some x. We get the following decreasing values for g01 as the

priority delay increases:

1 2 3 4 5 6 7 8 90

g1

g2

a1 <1 a2

a1 <1 a2

a1 <0 a2g1
0

g1
0

g1
0

Fig. 4. Di�erent priorities for a2 over a1.

g01 = g1 ^ :g2 = 0 � x < 2 _ x > 7 (immediate priority)

g01 = g1 ^ :3�1g2 = 0 � x < 1 _ x > 7 (priority within a delay of 1)

g01 = g1 ^ :3g2 = x > 7 (priority within an in�nite delay)

Figure 4 illustrates the above example. The �rst case corresponds to the \clas-

sical" priority choice, where a1 is disabled whenever a2 is enabled. The second

case is stronger: a1 is disabled also in case a2 becomes enabled in at most 1 time

unit. The third case is the strongest: a1 is disabled whenever it is possible for a2
to become enabled sometime in the future.

Finally, we should note that the use of negations to generate priority could

lead to right-closed TPCs. When urgency types are used, this can be avoided by

ensuring that a lazy transition never has higher priority over an eager transition.

3 Petri Nets with Deadlines

3.1 De�nition

For the sake of simplicity, we consider the timed extensions of 1-safe Petri nets.

De�nition 5 (Petri Net with Deadlines (PND))
A PND consists of :

{ A (1-safe) Petri net (P; T ; A) where :
� P is a �nite set of places.

� A is a �nite vocabulary of actions.

� T � 2P � A� 2P is a transition relation.

{ A set X = fx1; : : : ; xmg of clocks.
{ A labeling function h mapping untimed transitions elements of T into timed

transitions : h(P; a; P 0) = (P; (a; g; d; r); P 0), where P; P 0 � P.

As usually, we represent a PND as a bipartite labeled graph with two types

of nodes (places and transitions), see �gure 5. The transitions are labeled with

action names, guards, deadlines and resets.

: : :

: : :

p1 pm

p01 p0
n

a; g; d; r

Fig. 5. The transition (fp1; : : : ; pmg; (a; g; d; r); fp
0

1
; : : : ; p0

n
g).

We de�ne the semantics of a PND in terms of a TAD.

De�nition 6 (TAD associated to a PND)
A PND (P; T ; A;X; h) de�nes a TAD (S;!; A;X; h0) such that :

{ S = 2P

{ P
a
! P 0 if (P; a; P 0) 2 T

{ h0(P; a; P 0) = h(P; a; P 0).

The above de�nition simply means that a PND is a TAD where the discrete

transition structure is the corresponding marking graph. The transitions of the

marking graph are submitted to the same timing constraints as the transitions

of the PND. So PND are extensions of PNs where transitions are submitted to

timing constraints exactly as TAD are extension of automata.

By adopting standard PN terminology, we will say that there is a token in

place p when p is an element of the current state in the marking graph. Places

are local states of processes. A transition with several input places represents a

synchronization of several processes. It is enabled only if its input places have a

token and the associated timing constraints are satis�ed.

An example of PND is given in �gure 6.

true
true

x; y

x = 5
2 � x � 5

2 � x � 5

4 � y � 7

y = 7

x = 5y = 7

4 � y � 7

x = 5

4 � y � 7
y = 7

2 � x � 5

DB

A C

x; y
true
true

BD

AD

AC

BC

Fig. 6. A PND and its corresponding TAD.

3.2 Synchronization modes

We introduce some useful macro-notations that allow concise description of syn-

chronization guards in terms of timing constraints about the synchronizing pro-

cesses.

We �rst de�ne three di�erent synchronizing modes that correspond to di�er-

ent types of coordinations between processes. We suppose that, for a synchro-

nization transition, are given \local guards" gi expressing timing constraints

about termination of each contributing process. We associate each guard gi with

an input arc of the synchronization transition (�gure 7). A mode de�nes a way

of composing the guards gi to obtain the synchronization guard g.

AND-synchronization : The resulting guard g is the conjunction g =V
i2[1:::n] gi of the input guards. This simply means that synchronization is pos-

sible only if all processes can terminate together. In the example of �gure 8, we

get g = g1 ^ g2 = 3 � x � 7.

: : :

: : :

p1 pm

p01 p0
n

mode(g1; : : : ; gn); d; r

: : :

: : :

p1 pm

p01 p0
n

gng1

mode; d; r

Fig. 7. Meaning of synchronization notation.

2 3 5 7

2 � x � 5

3 � x � 7

3 � x � 5

3 � x � 7

2 � x � 5

g1

g2

AND(g1; g2)

MAX(g1; g2)

MIN(g1; g2)

Fig. 8. Resulting guards for the three synchronization modes.

MAX-synchronization : Synchronization can take place only if all the

contributing processes have terminated. This implies synchronization at times t

bounded by the maximum of the earliest termination times and the maximum

of the latest termination times of the contributing processes.

For this synchronization mode, we take g =
W
i2[1:::n] gi ^

V
j 6=i3

- gj. The

i-th term of the guard means that the i-th process can terminate (now) while

the others have already terminated. This allows to specify synchronization with

mutual waiting of all the contributing processes if3gi holds when the input place

pi is reached. Otherwise it may happen that before reaching an input place pi
the guard has been already satis�ed but this does not correspond to termination

of pi.

In the example of �gure 8, we get g = g1 ^ (3- g2)_ (3- g1) ^ g2 = 3 � x � 7.

MIN-synchronization : Synchronization takes place when one of the con-

tributing processes terminates and the others will eventually terminate. This

corresponds to a kind of interrupt where the fastest process triggers the syn-

chronization transition even though the other processes have not terminated.

Notice that synchronization times t are bounded by the minimum of the earliest

and the minimum of the latest termination time of the contributing processes.

We take g =
W
i2[1:::n] gi ^

V
j 6=i3gj. The i-th term of the guard means that

the i-th process can terminate (now) and all the others will eventually terminate.

For the example of �gure 8, we get g = g1 ^3g2 _3g1 ^ g2 = 2 � x � 5.

3.3 Translating safe timed Petri nets into PND

Many di�erent classes of timed Petri nets (TPNs) have been de�ned. An impor-

tant di�erence between TPNs and PND is that in the former timing constraints

are local and associated with tokens. A comparison of the two models in the

general case of non-safe Petri nets is out of the scope of this paper and is the

object of an ongoing work. Here, we restrict our attention to 1-safe TPNs.

Place-TPNs : [Sif77] In this class of TPNs, intervals [li; ui] are associated

with places pi. A token arriving at a place pi cannot be used for �ring an output

transition for some time t, li � t � ui. After this time it becomes available. A

transition �res as soon as all its input places have available tokens.

The principle of a method for translating Place-TPNs to PND is illustrated

in �gure 9.

Transition-TPNs : [Mer74] In this class of TPNs, intervals [li; ui] are asso-

ciated with transitions �i. A timed transition �i �res in times t, li � t � ui after

the corresponding untimed transition becomes enabled.

The principle of a method for translating Transition-TPNs to PND is illus-

trated in �gure 10.

Stream-TPNs : This type of TPNs is introduced in [SDdSS94]. Given a

transition � , an interval [li; ui] is associated with each input arc (pi; �) of � . A

token entering the input place pi must wait for a time t, li � t � ui, before

becoming available for the transition � .

Nine di�erent synchronization modes for stream TPNs are de�ned

in [SDdSS94] (see �gure 11). For each input place pi of the synchronization

[l1; u1] [l2; u2]

l1 � x1 � u1

MAX, #

x1 := 0 x2 := 0

l2 � x2 � u2

Fig. 9. From Place-TPNs to PND.

[l; u]

l � x1 � u

MAX, #

x1 := 0 x2 := 0

l � x2 � u

Fig. 10. From Transition-TPN to PND.

g1

g2

g1

g1

g1

g1

g1

g1

g2

g2

g2

g2

g2

g2

g1

g2

g1

g2

AND

WEAK-AND

OR

STRONG-OR

MASTER

OR-MASTER

WEAK-MASTER

[min(xi);max(yi)]

[max(xi);max(yi)]

[xm; ym]

[min(xi);min(yi)]

[min(xi); ym]

[max(xi);max(min(yi);max(xi))]

[xm;max(yi)]

Schematically, for two components.

(3g1 ^3- g2)_ (3g2 ^3- g1)

(g1 ^3- g2) _ (g2 ^3- g1)

g1 _ ((:3g1) #)

(g1 ^3g2) _ (g2 ^3g1)

((:3g1) #)_ ((:3g2) #)
_

[max(xi);max(ym;max(xi))]

AND-MASTER

[xm;max(min(yi); xm)]

STRONG-MASTER

g1 _ ((:3g1) #)_ (3g1 ^3- g2)

(g1 ^3- g2) _ ((g2 ^ :3g1) #)

(g1 ^3g2)_ ((g1 ^:3g2) #)

g1 _ (3- g1 ^3g2)

(g1 ^ g2)_ ((g1 ^ :3g2) #)_ ((g2 ^:3g1) #)

Synchronization modes [SDdSS94]. The corresponding TAD guard.

Fig. 11. Synchronization mode for Stream-TPNs.

transition � , two timers xi and yi are de�ned as follows: xi
def
= max(li � ti; 0)

and yi
def
= max(ui � ti; 0), where ti is the elapsed time since the arrival of the

token at place pi. Thus, xi and yi are taken to be the \current" lower and upper

bounds for the enabledness of each input arc (pi; �).

The nine synchronization modes are shown in the leftmost column of �g-

ure 11. Notice that, in the �gure, max and min denote the usual mathematical

operators and are not to be confused with the MAX and MIN synchroniza-

tion operators de�ned previously. Also, we write max(xi) as a shorthand for

maxi=1;:::nfxig, and similarly for min. The middle column of the �gure displays

the guards induced by each of the synchronization modes, for n = 2, where

gi = [li; ui].

The model of stream-TPNs can also be translated into our model, as shown

in the right-most column of �gure 11.

4 Applications

4.1 Producer { Consumer

We show how PND can be used to model a system composed of a producer and

a consumer communicating via a zero-length bu�er. The producer takes between

lp and up time units to produce an item, which is then made available to the

bu�er after a delay between l0p and u0p time units. The consumer needs between

lc and uc time units to consume an item and is ready for a new item after a delay

between l0c and u0c time units. The above delays are measured using one clock

per process, namely, x for the producer and y for the consumer. Figure 12(a)

shows the two processes modeled as PND.

Whenever the bu�er is full and the consumer is willing to take an item, the

latter is exchanged between the two processes by an instantaneous handshake.
The latter is represented by the synchronization transition of the PND corre-

sponding to the composition of the two processes, shown in �gure 12(b). The

guard g of the handshake transition can be chosen to be either g0 or g00, where:

g0 � AND(l0p � x � u0p; l
0
c � y � u0c)

� l0p � x � u0p ^ l0c � y � u0c
g00 � MAX(l0p � x � u0p; l

0
c � y � u0c)

� l0p � x � u0p ^ l
0
c � y _ l0p � x ^ l0c � y � u0c

In the �rst case, the temporal constraints are considered \hard", that is, it is

required that both lower and upper bounds of the intervals [l0p; u
0
p] and [l0c; u

0
c]

are respected in order for the handshake to take place. (An informal explanation

of this choice could be that u0p represents the \expiring date" of the item, while

u0c is the maximum time the consumer can wait, after which he/she \starves to

death".) AND synchronization is commonly used in the composition of systems,

however, it is a strict synchronization mechanism which often leads to deadlocks.

In the case of MAX synchronization, temporal constraints are \looser", that

is, only one of the upper bounds is required to hold. (Informally, this might

consume

empty

l0c � y � u0

c; #
y := 0

lc � y � uc; #
y := 0

produce

full

l0p � x � u0

p; #
x := 0

lp � x � up; #
x := 0

y := 0

lc � y � uc; # lp � x � up; #

fullempty

consume produce
(b)

g; d

x := 0
y := 0

x := 0

(a)

Fig. 12. Producer{Consumer system modeled as PND.

represent a more realistic situation, where the item never looses its value, while

the consumer is willing to wait.) MAX synchronization guarantees the absence

of deadlocks. Moreover, combined with appropriate deadlines, it can model syn-

chronization with minimal or maximal waiting, as we show below.

Regarding the urgency type of the synchronization transition, in the case of

AND synchronization it is reasonable to assume that the transition is delayable,

which gives the deadline:

d0 � g0 # � x = u0p ^ l
0
c � y � u0c _ y = u0c ^ l

0
p � x � u0p

In the case of MAX synchronization more than one possibilities are of interest,

namely:

{ The choice of delayble transition corresponds to a maximal-waiting policy:

d00 � g00 # � x = u0p ^ y � u0c _ y = u0c ^ x � u0p;

{ The choice of eager transition corresponds to a minimal-waiting policy;

{ The following choice corresponds to a \best-e�ort" synchronization scheme,

where either no upper bound is violated if possible, or the transition is

executed as soon as possible, in the case of violation:

d000 � d0 _ x = l0p ^ y � u0c _ y = l0c ^ x � u0p:

Notice that d000 cannot be obtained using any of the urgency types

, # or o.

4.2 Variations on the theme of mutual exclusion

We consider the generic mutual-exclusion situation shown in �gure 13. A resource

is shared by two processes P1 and P2 and can be used by at most one of them

at any time. Each time it is used, the resource is again available after an amount

of time which can vary in an interval I. Process Pi occupies the resource for an

amount of time in an interval Ci, for i = 1; 2. From the moment it has �nished

using the resource, Pi is ready to use it again after some delay in an intervalWi.

In the PND model shown in the �gure, clocks x1; x2 and z are used for P1, P2

and the resource, respectively.

wait1

use2

wait2

use1

x1 2W1 x2 2W2

resource

g1; �1 g2; �2

z 2 I z 2 I

x1 := 0 x2 := 0

x1 2 C1 x2 2 C2

z := 0 z := 0x1 := 0 x2 := 0

Fig. 13. Mutual exclusion modeled as PND.

There are di�erent policies of granting the resource to the processes, depend-

ing on how strict the temporal constraints of the problem are taken to be and

also on whether an optimal utilization of the resource is sought. We examine

some of these policies below, showing how they can be modeled by appropri-

ately choosing the guards gi and the urgency types �i shown in the �gure, for

i = 1; 2. We assume that I = [l; u],Wi = [li; ui] and Ci = [l0i; u
0
i], for i = 1; 2 (the

analysis can be generalized to unbounded intervals).

{ gi � AND(xi 2 Wi; z 2 I). In this case the temporal constraints are hard.

Then, if process Pi manages to get the resource, it is guaranteed to do so at

most ui time units after the time it has released it. On the other hand, the

resource is guaranteed not to be left idle for more than u time units after

it has been used for the last time. The problem of this method is that it

can easily lead to deadlocks, either local (i.e., where one process starves) or

global (i.e., where the whole system is blocked).

{ gi � MAX(xi 2 Wi; z 2 I). In this case the temporal constraints are loose

and the speci�cation is deadlock-free for any (non-empty) intervals I, Wi

and Ci.

{ gi � (xi 2 Wi) ^ 3- (z 2 I) or gi � (3- xi 2 Wi) ^ (z 2 I). These are

intermediate choices, looser than AND synchronization, however, without

avoiding deadlocks completely. In the �rst case, the upper bound of the

resource's interval is ignored, while in the second case, the processes' upper

bounds are ignored.

Regarding the urgency type of the synchronization transition, it can be cho-

sen to be either eager or delayable (lazy synchronization is not meaningful in

this case). Delayable is the less strict choice, minimizing the risk of deadlocks

in the case MAX is not used. Eager implies that a better utilization of the re-

source (i.e., less idle time) is achieved. However, if MAX synchronization is not

used, the risk of deadlocks is greater than in the delayable case, since the time

non-determinism is reduced.

We �nally consider the situation where process P1 is given a higher priority

with respect to process P2. This is typically the case when P1 demands the

resource much less frequently than P2 (for example, when P1 is the process

handling the keyboard, while P2 is any batch process). We can model the di�erent

priorities by enforcing the guard g2 into g
0
2 = g2^:3�u0

2
g1, where u

0
2 is the upper

bound of interval C2. The intention is to let P2 have the resource only if it is

guaranteed to �nish before P1 becomes ready.

4.3 Deadline-monotonic scheduling without preemption

We consider the following real-time scheduling problem. We are given a single

processor and a set of periodic tasks P1; :::; Pn to be executed upon this processor.

Task Pi has a computation delay Ci and becomes ready for execution every Ti
time units (the period of Pi). Furthermore, Pi needs to be completed at mostDi

time units after the moment it becomes ready (the deadline of Pi). We assume

that, for each i = 1; :::; n, we have Ci � Di � Ti. The processor can execute

only one process at a time and no preemption is allowed, that is, execution of a

process cannot be interrupted and continued later on. See �gure 14.

Di � � �

Ci deadline expires
task ready

Ti (period)

Fig. 14. Deadline-monotonic scheduling assumptions.

We show how Petri nets with deadlines can be used to model the so-called

deadline-monotonic algorithm [ABRW91] which solves the above scheduling

problem. 1 The algorithm is based on assigning static priorities to tasks ac-

cording to their deadlines. In particular, higher priorities are assigned to tasks

with shorter deadlines and no two tasks have the same priority (in case two tasks

have equal deadlines, their relative ordering is chosen arbitrarily).

Figure 15(a) shows the PND modeling task Pi. The net has three places,

namely, sleepi (the task hasn't become ready yet), waiti (the task is ready and

waiting to be served) and usei (the task is being served). Two clocks are used

per task, namely, xi and yi: xi counts the period Ti and also makes sure that

the deadline Di is not violated; yi counts the computation delay Ci.

waiti

sleep
i

usei

yi := 0

xi := 0

xi = Ti

Pi

yi = Ci

^
xi � Di

(a)

y2 = C2

^
x2 � D2

#

#

wait2resource

y1 := 0

use2

wait1

x1 := 0

x1 = T1

x1 < T1
y2 := 0

(b)

sleep
1

sleep
2

use1
x2 := 0
x2 = T2

y1 = C1

^
x1 � D1

Fig. 15. Deadline-monotonic scheduling modeled as PND.

Figure 15(b) shows the PND modeling the deadline-monotonic scheduling

algorithm for two tasks P1 and P2, assuming that the �rst one has higher priority

(i.e., D1 � D2). The processor is modeled as a single place the token of which

is necessary in order for a task to execute. Priority of P1 over P2 is ensured by

placing the guard x1 < T1 in the transition wait2 ! use2. Transitions waiti !
usei are both eager while all other transitions are delayable.

Using Kronos, we test the schedulability of two tasks for various values of

the parameters Ci; Di; Ti; i = 1; 2. The test is performed as follows. We �rst re-

place the parameters by their values and generate the TAD corresponding to the

resulting PND. Next, we translate this TAD to a classical TA with time-progress

conditions by using extra clocks to specify the urgency of certain transitions. Fi-

nally, we test whether in the TA there exist reachable states which are zeno, that

is, from which time can no longer progress. In fact, there are two cases: either

all reachable states of this TA are zeno, meaning that the tasks are not schedu-

1 We model a simpli�ed version of the algorithm. Actually, deadline-monotonic

scheduling uses preemption.

lable, or no zeno reachable states exist, which means that deadline-monotonic

scheduling can be applied.

4.4 Speci�cation and veri�cation of multimedia documents

Description This application deals with modeling a multimedia document as

a PND which can then be analyzed in order to check whether the document

admits an execution scenario. More precisely, we consider (a simpli�ed version

of) Madeus [JLSIR97] as the speci�cation language of multimedia documents.

This language combines operators from Allen's interval temporal logic [All83]

with waiting and interruption operators.

The building blocks of a document are media objects representing a piece of

information which has to be \played" continuously for a certain duration. The

latter can be either �xed, or variable, in which case some
exibility is allowed in

the presentation of the object. Let O = fO1; :::; Ong be the set of media objects.

With each Oi we associate a duration interval Ii of one of the following types:
[l; u], [l; u), [l;1) or (l;1), where l; u are natural constants.

Documents are tree-like structures, built according to the following syntax:

D ::= O j D1 op D2

where O 2 O and op is an operator among meets, equals, overlaps, parmin,

parmax, and parmaster. We require that each object O 2 O appears at most

once in any document speci�cation D.
Each operator has a dual function: First, it builds a composite document from

two simpler ones. Second, it imposes constraints on the order of the starting and

�nishing times of the component documents. These constraints can be trivial, as

in the case of the meets operator, or more demanding, as in the case of equals,

where consistency has to be ensured. Before giving the translation of a document

speci�cation to a PND, let us present intuitively the meaning of the operators

de�ned above.

{ D1 meets D2 is the document starting when D1 starts, �nishing when D2

�nishes, and where the end of D1 coincides with the beginning of D2;

{ D1 equals D2 is the document where D1 and D2 start and �nish at the same

time;

{ D1 overlaps D2 is the document starting when D1 starts, �nishing when D2

�nishes, and where the beginning of D2 is strictly later than the beginning of

D1, and the end of D1 is strictly later than the beginning of D2 and strictly

earlier than the end of D2;

{ D1 parmin D2 is the document where D1 and D2 start at the same time,

and the one which �nishes �rst terminates the document;

{ D1 parmax D2 is the document where D1 and D2 start at the same time,

and the one which �nishes last terminates the document;

{ D1 parmaster D2 is the document where D1 and D2 start at the same time,

and the document �nishes whenever D1 does.

Modeling With each media object Oi; i = 1; :::; nwe associate a clock xi. Also,

given a set of clocks X, we denote by X := 0 the resetting of each clock in X to

zero.

We now de�ne the translation of a document speci�cation D to a PND N .

The de�nition is by induction on the syntax of D. The media object Oi is trans-

lated to the net shown in �gure 16.

t0
i

ti

xi := 0

true xi 2 Ii

Oi

Fig. 16. The PND corresponding to the basic media object Oi.

In order to construct the PND for a document D1 op D2, we assume having

already the PND N1 and N2 corresponding to D1 and D2, respectively. These

nets have the general form shown in �gure 17, that is, a single starting transition

ti, a single �nishing transition t
0
i guarded by gi, and a body displayed as a dashed-

line box in the �gures. All the transitions are delayable, apart from the initial

transition which is eager. Also, we assume that this is the case for all the PND

resulting from the constructions shown in the sequel. It is easy to see that the

PND of a basic object conforms to this general scheme. The constructions that

are presented below preserve this general scheme.

gi

t0
i

ti

Ni

true
Xi := 0

Fig. 17. The general form of PND Ni corresponding to a document Di.

Figures 18, 19 and 20 show the PND corresponding to D1 meets D2,

D1 equals D2 and D1 overlaps D2, respectively. For the operators parmin,

parmax and parmaster the construction is identical to the one for equals, with

the di�erence that the guard g1 ^ g2 of the �nishing transition t0 is replaced by

MIN(g1; g2), MAX(g1; g2) and MASTER(g1; g2), respectively.

t1 t t02

N1

g2g1
X2 := 0X1 := 0

true

N2

Fig. 18. The PND corresponding to document D1 meetsD2.

g1 ^ g2

t0t

N2

N1

X1 [X2 := 0

true

Fig. 19. The PND corresponding to document D1 equalsD2.

t t0

true

y := 0

g1 ^ y > 0

y > 0

N2

N1

X1 [fyg := 0

X2 [fyg := 0

g2 ^ y > 0

Fig. 20. The PND corresponding to document D1 overlapsD2.

Veri�cation Given a document speci�cation D, we are interested in checking its
consistency , that is, whether the temporal constraints imposed by the various

operators and the duration intervals of each basic object are compatible. For

instance, the speci�cation O1 equals O2 is consistent if and only if the duration

intervals I1 and I2 have non-empty intersection.

To check consistency, we proceed as follows. We �rst construct the net N
corresponding to the speci�cation D. Next, we build the TAD A associated with

N and add two extra locations Begin and End to A. The former is the initial

location, source of the (unique) edge ofA corresponding to the starting transition

of N . End is the target location of the (unique) edge of A corresponding to the

�nishing transition of N . End has no outgoing edges. Finally, we check whether

End is reachable from Begin. If this is the case then D is consistent and we also

obtain a sample execution scenario in the form of a run of the automaton A.
Otherwise, the speci�cation is inconsistent. The reachability test is performed

using the real-time veri�cation tool Kronos.

An example

Description. We consider the following document speci�cation:

D � D1 meets D2

D1 � A equals
�
B parmax (C parminD)

�

D2 �
�
E meets (F equals G)

�
parmaster (H starts O)

where:

{ D is a document composed of two \scenes", that is, two sub-documents D1

and D2.

{ D1 is the introduction, composed of four media objects, namely, a video clip

A, a sound clip B, a piece of music C and a user button D. The intention is

that the video A is played in parallel with its sound B, while at the same time

music is heard in the background. The user can stop the music by pressing

the button.

{ D2 is the body of the document, composed of �ve media objects, namely,

a still picture E followed by a video clip F and its sound clip G, which

determine the presentation of an animation H and a diagram O.

{ The duration intervals of the objects are as follows:

A : [15; 17]B : [14; 16] C : [9; 11]D : [10; 13]

E : [5; 7] F : [3; 6] G : [4; 7] H : [6; 12] O : [11;1)

{ D0 starts D00 is a macro-notation for (D0 meetsR) equals D00, where R

is a \dummy" media object of null content having an arbitrary duration in

(0;1).

Modeling. The speci�cation D is modeled as the PND shown in �gure 21. For

clarity reasons, we have reduced the number of clocks in this example to the least

possible. Indeed, since A;B;C;D start simultaneously, their respective clocks

have the same value, thus, they can be replaced by the same clock, say, x. Clock

x is re-used for E;H;O, while clock y is associated to F;G. Finally, a clock z is

associated to the dummy object used for starts.

C

B

A

D

y := 0

t3

t2

t4

t0

g2

x := y := 0
x := 0

z := 0

G

F

H

E

O

g1
g4g3

t1

Fig. 21. Example multimedia speci�cation translated into a PND.

All transitions are delayable and their guards are as follows:

g1 � (x 2 IA) ^MAX
�
(x 2 IB);MIN

�
(x 2 IC); (x 2 ID)

��

g2 � (x 2 IE)

g3 � (x 2 IH)

g4 � MASTER
�
(y 2 IF ^ y 2 IG); (z > 0 ^ x 2 IO)

�

After replacing operators MIN;MAX;MASTER by their de�nitions and elimi-

nating all existential quanti�ers, we obtain:

g1 � 15 � x � 16

g2 � 5 � x � 7

g3 � 6 � x � 12

g4 � 4 � y � 6

Therefore, we see that clock z is not needed.

y � 6

x � 7

5 � x � 7
y := 0

End

5 � x � 7
y := 0

FGO
4 � y � 6

FGHO

EO

EHO

6 � x � 12

true

x := 0

15 � x � 16

x := 0
x � 16

ABCD

x � 7

x � 12
6 � x � 12

0 1

2

3

4 5

Fig. 22. The TAD corresponding to the PND of �gure 21.

Consistency analysis. In order to verify the consistency of the speci�cation, we

translate the PND of �gure 21 to the TAD shown in �gure 22. Then, using

Kronos, we �nd that the �nal location End is indeed reachable, and we are

given the following sample execution scenario, in form of a symbolic trail . The
latter is made of a sequence of symbolic states, that is, pairs of a control location
and a clock guard. Each symbolic state is followed by its time successor, which

is in turn followed by an action successor.

h 0; x = 0 and y = 0 i
h 0; 15 � x and x � 16 and x = y i
15 � x and x � 16) end ABCD; resetfxg; goto 1

h 1; x = 0 and 15 � y and y � 16 i
h 1; 5 � x and x � 7 and x+ 15 � y and x � y + 16 i
5 � x and x � 7) end E; resetfyg; goto 2

h 2; 5 � x and x � 7 and y = 0 i
h 2; 6 � x and x � 12 and y � 6 and x � y + 7 and y + 5 � x i
6 � x and x � 12) end H; resetfg; goto 4

h 4; 6 � x and x � 12 and y � 6 and x � y + 7 and y + 5 � x i
h 4; 4 � y and y � 6 and x � y + 7 and y + 5 � x i
4 � y and y � 6) end FGO; resetfg; goto 5

h 5; 4 � y and y � 6 and x � y + 7 and y + 5 � x i
h 5; 4 � y and x � y + 7 and y + 5 � x i

5 Conclusions

The paper proposes a methodological framework for modeling urgency in timed

systems. Urgency is an essential feature of timed systems and is related to their

capability of waiting before executing actions. Compared to untimed systems

where waiting is asynchronous (inde�nite waiting of a process is usually allowed),

waiting times are the same in all components of a timed system. Incompatibility

of time progress requirements for the processes of a system may lead to incon-

sistency in speci�cations.

The main thesis of the paper is that many di�erent ways of composing time

progress conditions are useful in practice. Furthermore, time progress condition

description should not be dissociated from action description. This leads to the

de�nition of TAD which are timed automata composed of timed transitions,

transitions speci�ed in terms of two related conditions expressing respectively,

possibility and forcing of execution by stopping time progress. The TAD are a

subclass of timed automata that satisfy the time reactivity condition meaning

that from any state as long as there are no actions enabled, time can progress.

The proposed methodology is based on the idea that complex timed systems

can be obtained as the composition of elementary ones (timed transitions) by

means of choice and synchronization operations. The latter allow to de�ne the

guard and the deadline of a synchronization action in terms of the guards and

deadlines of the synchronizing actions. Apart from AND-synchronization that

corresponds to the commonly used conjunctive synchronization, other synchro-

nization modes are shown to be of practical interest as they have been introduced

in timed models such as the timed extensions of Petri nets. These synchroniza-

tion modes can be expressed in terms of AND-synchronization if auxiliary states

(and transitions) are added to represent information encoded by modalities in

the expression of synchronization guards. However, this may lead to complex

constructions and make speci�cations less legible. Thus, the di�erent synchro-

nization modes are at least an interesting macro-notation, especially for systems

with loosely coupled components where coordination is realized by mechanisms

seeking consensus and
exibility e.g., protocols. In fact, the modal formulas in

synchronization guards can be considered as the abstract speci�cations of a pro-

tocol used to implement the described coordination.

The paper contributes to clarifying the notion of urgency and proposes the

mechanisms that are necessary for a \natural" speci�cation of timed systems.

It shows amongst others, that for general timed systems speci�cation a rich

methodological framework is necessary that includes new concepts and con-

structs that are not applicable to untimed systems. In fact, compositional de-

scription of untimed speci�cations can be extended in many di�erent manners

to timed speci�cations, as shown by several examples. It is remarkable that the

composition mechanisms de�ned initially for timed automata or process alge-

bras are obtained by lifting directly the corresponding mechanisms for untimed

systems (conjunction of guards and time progress conditions for synchroniza-

tion) This contrasts with ad hoc
exible synchronization mechanisms added to

Petri nets or to logical speci�cation languages. We believe that our results al-

low to compare and better understand the relations between the existing timed

formalisms and can be a basis of a framework for compositional speci�cation of

timed systems.

References

[ABRW91] N.C. Audsley, A. Burns, M.F. Richardson, and A.J. Wellings. Deadline-
monotonic scheduling. In Proc. 8th IEEE Workshop on Real-time Operating

Systems and Software, 1991.

[ACD93] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time.
Information and Computation, 104(1):2{34, 1993.

[All83] J.F. Allen. Maintaining knowledge about temporal intervals. Communica-

tions of the ACM, 26(11):832{843, November 1983.
[BS97a] S. Bornot and J. Sifakis. On the composition of hybrid systems (complete

version). In International NATO Summer School on \Veri�cation of Digital

and Hybrid Systems", Antalya, Turkey, 1997.
[BS97b] S. Bornot and J. Sifakis. Relating time progress and deadlines in hybrid

systems. In International Workshop, HART'97, pages 286{300, Grenoble,

France, March 1997. Lecture Notes in Computer Science 1201, Spinger-
Verlag.

[HNSY94] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model

checking for real-time systems. Information and Computation, 111(2):193{
244, 1994.

[JLSIR97] M. Jourdan, N. Laya��da, L. Sabry-Ismail, and C. Roisin. Authoring and

presentation environment for interactive multimedia documents. In Proc. of
the 4th Conf. on Multimedia Modelling, Singapore, November 1997. World

Scienti�c Publishing.

[Mer74] P. Merlin. A study of the recoverability of computer systems. Master's
thesis, University of California, Irvine, 1974.

[SDdSS94] P. S�enac, M. Diaz, and P. de Saqui-Sannes. Toward a formal speci�cation of

multimedia scenarios. Annals of telecomunications, 49(5-6):297{314, 1994.
[Sif77] J. Sifakis. Use of petri nets for performance evaluation. In H. Beilner

and E. Gelenebe, editors, Measuring, modelling and evaluating computer

systems, pages 75{93. North-Holland, 1977.
[SY96] J. Sifakis and S. Yovine. Compositional speci�cation of timed systems.

In 13th Annual Symposium on Theoretical Aspects of Computer Science,

STACS'96, pages 347{359, Grenoble, France, February 1996. Lecture Notes

in Computer Science 1046, Spinger-Verlag.

