
A Framework for Scheduler Synthesis

K. Altisen, G. G�o�ler, A. Pnueli, J. Sifakis, S. Tripakis, and S. Yovine

Verimag, Centre �Equation, 2 Ave. de Vignate, 38610 Gi�eres, France

E-mail: faltisen,goessler,pnueli,sifakis,tripakis,yovineg@imag.fr

Abstract

In this paper we present a framework integrating

speci�cation and scheduler generation for real-time sys-

tems. In a �rst step, the system, which can in-

clude arbitrarily designed tasks (cyclic or sporadic, with

or without precedence constraints, any number of re-

sources and CPUs) is speci�ed as a timed Petri-net. In

a second step, our tool generates the most general non-

preemptive online scheduler for the speci�cation, using

a controller synthesis technique.

1 Introduction

A complex real-time system is typically composed

of several tasks that interact. The execution of each

task is subject to di�erent kinds of constraints, some of

which are proper to the task such as completion times,

deadlines and periods, while others, such as resource

sharing and synchronization delays, are imposed by the

environment in which the tasks are executed.

An important problem that arises is the one of en-

suring that the tasks can be executed in such a way

that (1) they respect the constraints they are subject

to, and (2) the overall system performs correctly with

respect to its speci�cation, i.e., satis�es a given prop-

erty. Solving this problem usually requires scheduling

the tasks in an appropriate way. This amounts to, given

a system S and a property P , constructing a scheduler

C (that depends on S and P) which \controls" the

execution of S so it satis�es P .

One approach to constructing a scheduler C consists

in giving a scheduling policy, that is, a systematic way

of ordering the execution of the tasks in the time line

according to their deadlines, periods and priorities, for

a speci�c property P , e.g., mutual exclusion [12, 4].

This approach, which has been thoroughly studied in

the real-time systems' literature, provides means to

schedule systems that satisfy su�cient schedulability

conditions depending on a particular scheduling policy.

In this paper, we follow a di�erent approach which

consists in building a scheduler (if such a scheduler ex-

ists) tailored to the particular application and property,

regardless of any a-priori �xed scheduling policy which

might not �t the particular requirements and struc-

ture of both the system and the speci�cation. In other

words, the scheduler needs not be constrained to follow

a prede�ned scheduling policy but may adapt its deci-

sions according to the behavior of the environment and

the property to be satis�ed. In this sense, constructing

a scheduler amounts to doing controller synthesis [17].

The approach based on scheduling policies is well

suited for real-time applications (e.g., avionics) where

the behavior of the environment is not predictable and

reactions to external events must be immediate. There

are, however, many reasons in favor of following our

approach, especially for real-time applications, such as

multimedia and telecommunication systems, that in-

teract with strongly constrained environments. For

such applications, it is desirable to generate tailor-made

schedulers at compile time that make optimal use of the

underlying execution hardware and shared resources,

guided by the knowledge of all the possible behaviors

of the environment.

To achieve our goal, we propose a framework for

constructing schedulers that combines recent results on

modeling and synthesis of timed systems. This frame-

work is supported by a prototype tool whose structure

is depicted in �g. 1.

As modeling language we use Petri Nets (PND)

equipped with a set of clocks that measure time as in

the timed automata (TA) formalism [1]. For method-

ological reasons, both to facilitate the description of

synchronization conditions and to enhance the read-

ability of the speci�cations, we enrich the basic for-

malism with high-level synchronization primitives. Be-

sides, the transitions of a PND are classi�ed into con-

trollable and uncontrollable. Intuitively, the former cor-

respond to transitions that can be triggered by the

scheduler (e.g., grant access to a shared resource), while

the latter are subject to timing constraints imposed by

the environment (e.g., completion of a task, communi-

cation delay). The semantics of a PND is given in terms

of an appropriate class of timed automata, called timed

automata with deadlines (TAD).

The backbone of our approach is an algorithm that

given a TAD A and a property P , constructs a TAD

AP which models all the behaviors of A that satisfy

P for any possible sequence of uncontrollable transi-

tions. In other words, AP describes all the schedules

that satisfy the property, a schedule being a sequence

of controllable transitions for a given pattern of uncon-

trollable behaviors.

The paper is organized as follows. Section 2 presents

the description formalism (PND) and the semantic

model (TAD). Section 3 is devoted to the synthesis

algorithm. To demonstrate the feasibility of the ap-

proach we treat several case-studies issued from di�er-

ent application domains (Section 4). In the last section

we present some conclusions and discuss future and re-

lated work.

PND TAD SchedulerSemantic
Translation

Synthesis

Algorithm

Property

Figure 1. The framework.

2 Modeling

2.1 Description formalism

As formalism to describe the behavior of real-time

systems we have chosen Petri Nets with Deadlines

(PND) [5]. A PND consists of (1) a 1-safe Petri net

(P ; T ; A) where P is a �nite set of places, A is a �nite

vocabulary of actions, and T � 2P�A�2P is a transi-

tion relation; (2) a set X = fx1; : : : ; xmg of real-valued

variables called clocks ranging in IR+; (3) a labeling

function h mapping untimed transitions (P; a; P 0) 2 T

into timed transitions: h(P; a; P 0) = (P; (a; g; r); P 0),

where the guard g is a predicate de�ned by the follow-

ing grammar: g ::= x#c j x � y#c j g ^ g j :g, where

x; y 2 X , c is an integer and # 2 f�; <g, and r � X

is a set of clocks to be reset.

We assume that A = Ac [Au is partitioned into

two classes of actions. Transitions labeled with actions

in Ac are called controllable while those labeled with

actions in Au are called uncontrollable. The former

are those that can be triggered by the scheduler (e.g.,

grant a resource to a process), whereas the latter only

depend on the behavior of the environment (e.g., jitter,

communication delays).

A transition in a PND is enabled for a given marking

and clock valuation (i.e., an assignment of real values

to clocks) i� it is enabled for the marking (according

to the semantics in the untimed case), and the clock

valuation satis�es the associated guard.

Example 2.1 Consider a system composed of two jobs

Job1 and Job2 [11]. Let ei and si, i = 1; 2 be Jobi's

execution time and start time, respectively. The behav-

ior of the system is constrained to the following condi-

tions (�gure 2): (1) 5 � e1 � 7 and 3 � e2 � 4; (2)

s1+e1 � 12 and s2+e2 � 25; (3) s2+e2 � s1 + e1 + 10;

and (4) s2 � 14. The termination of the execution of a

job is an uncontrollable action, while the start time of

a job can be controlled to meet the requirements.

t = 0

� 25

[3; 4]

s2 s2 + e2 t

[5; 7]

Job1

s1 s1 + e1

� 14

� 12

Job2

� 10

Figure 2. Example of two jobs.

We model the system as the PND shown in �gure

3. Guards of controllable (resp. uncontrollable) tran-

sitions are marked c (resp. u), and drawn with thick

(resp. thin) lines. The set of clocks to be reset at

a transition is given between accolades, if not empty.

Time is measured by the clock t. s1 (resp. s2) is the

value of t when Job1(resp. Job2) starts, that is, when

the controllable transition beg1 (resp. beg2) is �red.

s1+ e1 (resp. s2+ e2) is the value of t when Job1(resp.

Job2) �nishes, that is, when the uncontrollable transi-

tion end1 (resp. end2) is �red. a measures the time

elapsed since the end of Job1. If any of the above con-

ditions is not respected, the system reaches the error

state by some of the erri transitions for i = 1; 2; 3.

2.2 Semantic model

As semantic model we have chosen the so-called

Timed Automata with Deadlines (TAD) [5]. TAD's are

timed automata where invariant conditions associated

to control locations, typically used to impose upper

bounds on the values of the clocks and therefore force

the automaton to take a transition, have been replaced

by deadline conditions on the transitions which must

be taken before the deadlines expire.

A TAD consists of (1) a discrete labeled transition

system (S;!; A) with S a �nite set of discrete states, A

exec1

wait2

exec2

error

wait1

ftg
truec

(3 � x2 � 4)u(a > 10)u

err2

(t > 25)u

end1 end2

beg2

end2end1
err3

beg1

err1

fag
(5 � x1 � 7)u

(t > 12)u

fx2g
(t � 14)c

fx1g
truec

Figure 3. PND of the two jobs system.

a �nite vocabulary of actions, and!� S�A�S an un-

timed transition relation; (2) a set X = fx1; : : : ; xmg of

real-valued variables called clocks ranging in IR+; and

(3) a labeling function h mapping untimed transitions ,

elements of !, into timed transitions : h(s; a; s0) =

(s; (a; g; r); s0), where g is the guard and r � X is a

set of clocks to be reset.

Formally, the semantics of a PND is de�ned in terms

of the semantics of a TAD. A PND (P ; T ; A;X; h) de-

�nes a TAD (S;!; A;X; h0) such that (1) S � 2P is

a set of discrete states (markings); (2) s
a
! s0 i� there

exist P1; P2 � P such that (P1; a; P2) 2 T , P1 � s and

s0 = (s� P1) [P2; and (3) h0(s; a; s0) = h(P1; a; P2).

Now, a state of a TAD is a pair (s; v), where s 2 S

is a discrete state and v 2 IRm
+ is a clock valua-

tion. We associate with a TAD a transition relation

!� (S � IRm
+) � (A [IR+) � (S � IRm

+). Transitions

labeled by elements of A correspond to discrete state

changes while transitions labeled by non-negative reals

correspond to time steps .

Given s 2 S, let J be the set of indices such that

f(s; aj ; sj)gj2J is the set of all the transitions departing

from s. Also let h(s; aj ; sj) = (s; (aj ; gj ; rj); sj). For

all j 2 J , (s; v)
aj
! (sj ; v[rj]) i� gj(v) evaluates to true

and v[rj] is the clock valuation obtained from v when

all the clocks in rj are set at zero and the others left

unchanged. For all t 2 IR+, (s; v)
t
! (s; v + t), where

v+ t is the valuation obtained from v by increasing all

the clock values by t, i� the following condition holds:

�
8t0; 0 � t0 < t : :

W
j2J d

c
j(v + t0)

�
^�

8t0; 0 < t0 � t : :
W

j2J d
o
j (v + t0)

� (1)

where dcj and doj are, respectively, the closed and open

deadlines of transitions j de�ned by

dcj(v) = gj(v) ^ 9t > 0:8t0 2 (0; t]::gj(v + t0)

doj (v) = :gj(v) ^ 9t > 0:8t0 2 (0; t]:gj(v � t0)

The closed deadline dcj is contained in the guard gj and

can be reached, but not left behind by time progress.

On the other hand, the open deadline doj is not con-

tained in the guard gj and cannot be reached by

time progress although it can be approached arbitrar-

ily close. Thus, condition (1) establishes that it is not

allowed that the progress of time disables any enabled

transition departing from s.

Notice that the de�nition of time progress makes

sure that the TAD is non-blocking, that is, every state

(s; v) has at least one outgoing transition, either dis-

crete or timed. This is, indeed, the main semantic

property that distinguishes TAD's from TA's: in con-

trast to invariant conditions associated with discrete

states that impose upper bounds on clocks and force

the TA to take a transition, deadline conditions asso-

ciated with transitions permit the modeling of urgency

while avoiding introducing deadlocks as a side e�ect

[5].

2.3 Synchronization modes

In a PND, a synchronization transition (one with

more than one input arc) can be considered as the

coordination of transitions corresponding to its input

arcs. Synchronization guards can be obtained from

guards of those transitions by applying synchronization

rules characterizing the semantics of the synchroniza-

tion. We adopt the following notation: for synchro-

nization transitions, the guards are replaced by guards

gi associated with their input arcs, and a label denot-

ing a synchronization mode. The latter corresponds to

a type of coordination and de�nes a way for composing

the guards of the input arcs to obtain the synchroniza-

tion guard (�gure 4), where mode is one of AND,MAX,

MIN.

: : :

: : :

p1 pm

p01

gng1

p0n

mode

: : :

: : :

p1 pm

p0np01

g = mode(g1; :::; gn)

Figure 4. Synchronization notation.

For the description of the synchronization modes we

de�ne 3g (read \eventually g") and 3- g (read \once

g") as follows:

(3g)(v) if 9t 2 IR+: g(v + t)

(3- g)(v) if 9t 2 IR+: 9v
0 2 IRm

+ :

v = v0 + t ^ g(v0)

Notice that the operators 3 and 3- can be eliminated

to obtain simple predicates without quanti�ers. We use

these operators to de�ne the following synchronization

modes:

AND-synchronization. The resulting guard g is

the conjunction g =
V
i2[1:::n] gi of the input guards.

This simply means that synchronization is possible only

if all processes can terminate together. In the example

of �gure 5, we get g = g1 ^ g2 = 3 � x � 7.

MAX-synchronization (rendez-vous). Synchro-

nization can take place only if all the contributing pro-

cesses have terminated. This implies synchronization

at times t bounded by the maximum of the earliest ter-

mination times and the maximum of the latest termina-

tion times of the contributing processes. For this syn-

chronization mode, we take g =
W

i2[1:::n] gi^
V
j 6=i3

- gj .

The i-th term of the guard means that the i-th process

can terminate now while the others can either termi-

nate now or have already terminated. In the example of

�gure 5, we get g = g1^(3- g2)_(3- g1)^g2 = 3 � x � 7.

MIN-synchronization. Synchronization takes

place when one of the contributing processes termi-

nates and the others will eventually terminate. This

corresponds to a kind of interrupt where the fastest

process triggers the synchronization transition even

though the other processes have not terminated.

Notice that synchronization times t are bounded by

the minimum of the earliest and the minimum of the

latest termination time of the contributing processes.

We take g =
W
i2[1:::n] gi ^

V
j 6=i3gj. The i-th term of

the guard means that the i-th process can terminate

now and all the others can terminate either now or

in the future. In the example of �gure 5, we get

g = g1 ^3g2 _3g1 ^ g2 = 2 � x � 5.

When only controllable actions are composed, syn-

chronization is supposed to model coordination, there-

fore, the resulting action is also controllable. That is,

mode(gc1; g
c
2) = (mode(g1; g2))

c. This can be easily un-

derstood by the fact that the dates can be appropri-

ately chosen for each action so as to achieve synchro-

nization. When controllable and uncontrollable actions

are composed, it is not in general possible to associate

2 3 5 7

2 � x � 5

3 � x � 7

3 � x � 5

3 � x � 7

2 � x � 5

g1

g2

AND(g1; g2)

MAX(g1; g2)

MIN(g1; g2)

Figure 5. Resulting guards for the three syn-
chronization modes.

one of the types, controllable or uncontrollable, to the

synchronization guard. However, synchronization in-

volving uncontrollable actions can be modeled using

more than one transition [7]. As an example, the MIN-

synchronization between a controllable and an uncon-

trollable action can be modeled by putting the corre-

sponding transitions in parallel, such that they share

the same input and output places (see the following

example). Discussing other synchronization primitives

involving uncontrollable actions is out of the scope of

this paper.

All the de�ned modes are commutative and asso-

ciative, which allows us to extend them in order to

synchronize n actions. AND-synchronization is the

most usual synchronization mode considered in liter-

ature. However, the use of MAX and MIN allows more

concise speci�cations and avoids explosion of the state

space [5]. Furthermore, it allows extending untimed

speci�cations to timed speci�cations without modify-

ing the underlying control structure. To illustrate the

use of the de�ned synchronization modes consider the

following example.

Example 2.2 A multimedia document is composed of

the following basic activities and their corresponding

duration constraints, noted as [minimal duration, max-

imal duration]: music [30, 40], video [15, 20], audio

[20, 30], text [5, 10], applet [20, 30], picture [20, 1].

In the beginning, music, video, audio, and applet are

launched in parallel. The basic activities are submitted

to the following synchronization constraints: (1) video

and audio terminate as soon as any one of them ends;

their termination is immediately followed by the text

to be displayed; (2) music and text must terminate at

the same time; (3) the applet is followed by a picture;

(4) the document terminates as soon as both the pic-

ture and the music (and text) have terminated; and (5)

the execution times of both the audio and the applet

depend on the machine load and are therefore uncon-

trollable. Fig. 6 shows a PND modeling the described

document.

music

video

audio

text
ready done

true
fxm; xv; xapg

applet

fyg

fzg

guau
fyg

gcv

guap

picture

(MAX(AND(gm; gt); gp))
c

Figure 6. PND of the multimedia document.

Transitions synchronizing controllable and uncon-

trollable actions are highlighted by a dotted box. The

guards are as follows: gm = (30 � x � 40), gv = (15 �

y � 20), gau = (20 � y � 30), gt = (5 � y � 10),

gap = 20 � z � 30, gp = 20 � z, and

gc := MAX(AND(gcm; g
c
t); g

c
p)

= (gm ^ gt ^3- gp _ 3- (gm ^ gt) ^ gp)
c

= (30 � x ^ 5 � y ^ 20 � z ^

20 � x� y � 35 ^ x� z � 40 ^

y � z � 10)c

The corresponding TAD is depicted in �gure 7. Con-

trollable transitions are drawn with thick lines.

done

ready

music
video
audio
applet

music
text

applet

music
text

music
video
audio

picture

picture

fyg
(15 � y � 20)c

(15 � y � 20)c

fyg

(20 � z � 60)u

fzg

fyg
(20 � y � 30)u

fyg
(20 � y � 30)ufzg

(20 � z � 60)ufx; y; zg
truec

gc

Figure 7. TAD of the multimedia document.

A tool to synchronize transitions of a PND, simplify

the resulting guards, and translate the obtained PND

into a TAD, has been implemented [7]. All the exam-

ples treated in this paper have been processed with this

tool.

3 Synthesis

The synthesis algorithm allows to compute from a

given TAD A and a given property Q a TAD AQ char-

acterizing all the states of A that satisfy Q regardless

of the uncontrollability of some transitions. In other

words, AQ characterizes all the sequences of control-

lable transitions that keep the system only in states

where Q is satis�ed for any uncontrollable behavior.

The synthesis algorithm is an adaptation of the one

proposed in [14] for properties of the form 2P (read

\always P") and 3P (read \eventually P") where P is

a state predicate. They are based on a procedure that

starts with the states that satisfy P and keeps on iter-

ating a single-step controllable predecessor operator �

until a �xed point is reached. The iteration schemes are

shown in table 1. It has been shown that the iterations

terminate [3].

(a) (b)

Q0 = P Q0 = P

Repeat Repeat

Qi+1 = Qi
[�(Qi) Qi+1 = Qi

\ �(Qi)

Until Qi = Qi+1 Until Qi = Qi+1

Table 1. Algorithms for 3P (a) and 2P (b)

The operator � is de�ned as follows. Given a TAD,

(S;!; A; h) and a state predicate P , we de�ne the pred-

icate transformer � such that �(P) represents all the

states of the TAD from which it is possible to reach a

state of P by taking some controllable transition, possi-

bly after letting time pass, while ensuring that there is

no uncontrollable transition that leads into :P . More

formally, for a state (s; v) of the TAD:

�(P)(s; v) = 9t 2 IR+: (s; v)
t
! (s; v + t) ^

prec(P)(s; v + t) ^

:9t0 2 [0; t]: preu(:P)(s; v + t0)

where prec(P) is the set of states from which a state of

P can be reached by executing a controllable transition:

prec(P)(s; v) = 9s
a
! s0: h(s; a; s0)

= (s; (a; g; r); s0) ^ P (s0; v[r]) ^

(a 2 Ac ^ g(v)

_ a 2 Au ^ dcg(v))

where we consider as controllable the transitions pro-

duced when an uncontrollable transition reaches a

closed deadline1. Notice that the de�nition of prec(P)

characterizes only those states that have a successor

reachable by a controllable transition, and henceforth

ensures the non-blocking property. preu(P) is the set

of states from which a state of P can be reached by

1In a similar way, open deadlines of uncontrollable actions can

be considered as controllable, but the current implementation
does not treat this case.

executing an uncontrollable transition:

preu(P)(s; v) = 9s
a
! s0: h(s; a; s0)

= (s; (a; g; r); s0) ^ P (s0; v[r]) ^

a 2 Au ^ g(v):

Now, let Q be the property and Q� =
S
s2S Q

�
s be

the set of states computed by one of the algorithms

above. AQ has the same discrete structure as A, and

the same timing information except for its controllable

guards: the guard g of every controllable transition

(s; (a; g; r); s0) is replaced by g0 = g ^ Q�
s ^ prea(Q

�
s0),

where prea(P)(s; v) = P (s0; v[r]) ^ g(v), while uncon-

trollable transitions remain unchanged. Clearly, if AQ

is initialized with a state in Q�, by executing control-

lable transitions, it will remain in Q� and cannot pos-

sibly reach states of :Q� by executing uncontrollable

actions. AQ is maximal in the sense that it spans all

the possible schedules for the considered properties [3].

Notice that if Q� is empty, then no scheduler could

prevent A from violating Q.

The algorithms for computing Q� and AQ for reach-

ability and invariance properties have been imple-

mented in Kronos [6] where special care has been

taken to reduce complexity in the implementation of

� [2]. The results and performances of the algorithms

in several case studies are given in Section 4.

Example 3.1 Recall the example about the two jobs

presented in Section 2. The goal is to synthesize a

scheduler that starts Job1 and Job2 at appropriate

times to avoid reaching error state. We apply the syn-

thesis algorithm for the property 2:error. The result

establishes that the only possible schedules must ex-

ecute the two processes in mutual exclusion, that is,

Job1 must be started after Job2 has �nished as sug-

gested by �gure 2. If we consider the places wait1 and

wait2, we �nd out that the schedulable states satisfy

the following constraints: 3 � s1 � 5 and 14 � s2 � 18

and s2�s1 � 13. In words, the start time of Job1 must

be chosen in the interval [3; 5] and Job2 must be started

no longer than 13 time units after Job1. The constraint

synthesized by our algorithm contains all the solutions

exhibited in [11].

Example 3.2 Here we illustrate the application of the

synthesis algorithm for reachability properties on the

multimedia example. In this case, we seek for the ex-

istence of a scheduler that steers the system from the

initial state to the state done. We apply the algorithm

for the property 3done and the result obtain is that

the document is indeed schedulable. The execution

time of text can be dynamically adapted to the du-

ration of video and audio so as to make music and text

terminate synchronously. The corresponding scheduler

is shown in �g. 8. The restricted guards of controllable

transitions, computed by the synthesis algorithm, are

printed in bold. Notice that if video terminates at a

time y < 20, the marking fmusic, text, appletg will be

reached with a valuation satisfying x � y < 20 which

falsi�es the synchronization guard gc and therefore the

only possible schedule guaranteeing the reachability of

done must terminate video at y = 20.

done

ready

music
video
audio
applet

music
text

applet

music
text

music
video
audio

picture

picture

fx; y; zg

truec

fyg
(20 � y � 30)u

fyg
(20 � y � 30)u

(20 � z � 60)u

fzg

fzg
(20 � z � 60)u

fyg

fyg
(y = 20)c

(y = 20)c

gc

Figure 8. Multimedia scheduler.

4 Case studies

In this section we apply the proposed synthesis

framework to three case studies.

4.1 The Greeting Card Example

We consider here an interactive greeting-card con-

sisting of basic media such as texts, audio tracks, a

picture and an animation. The original speci�cation

has been provided in Madeus [9]. We model the card

as a PND and then synthesize a controller that gener-

ates execution scenarios respecting the temporal con-

straints of the speci�cation.

The basic activities, along with their possible execu-

tion times and the controllability of their termination,

are the following ones (C (resp. U) means that the

document is controllable (resp. uncontrollable)):

start button [0; 100] U
xmast text \Merry Christmas" [4; 10) C

xmasm audio \Jingle Bells" [5; 7] U

and text \and" [2; 5] C

smiley animation [3; 4] U

family text \family" [5; 15] C

yeart text \Happy new year" [5; 15] C

smith text \Smith" [5; 15] C

yearm audio \Firework music" [5; 7] C
photo picture [20;1) C

With a click on the start button, the text \Merry

Christmas" appears, accompanied by Christmas mu-

sic. As soon as one of them has terminated playing,

the texts \and" and \Happy New Year" are displayed

one after the other. The latter is played together with

H�andel's \Firework music" sound track. The �rst one

to terminate interrupts the other, and the text \Smith"

moves over the screen. During the displaying of the

word \and", an animated smiley is displayed. When

it ends, the text \family" appears and moves over the

screen. Finally, the two textual elements \family" and

\Smith" come to stop synchronously, one above the

other. While playing the described media, a family

photo is displayed in the background.

start

ready done

andxmast

yeart

yearm

smileyxmasm

dummy2

dummy1

photo

smith

family

fx; yg
truec

fy; zg

fyg

(5 � y � 7)u

(y � 100)u

fyg

(4 � y � 10)c

(z > 0)c

gc1

(3 � z � 4)u

fzgfzgfy; zg

(2 � y � 5
^z > 0)c

fyg

gc2

Figure 9. PND modeling the greeting card.

The corresponding PND is shown in �gure 9. The

places dummy1 and dummy2 make sure that smiley

is executed during the displaying of AND. The MIN-

synchronization between the outgoing transitions of

xmast and xmasm, the latter of which is uncontrol-

lable, is done according to the MIN-synchronization

rule. The synchronization guards gc1 and gc2 are ob-

tained as follows:

gc1 = MIN((5 � y � 15)c; (5 � y � 7)c)

= (5 � y � 7)c

gc2 = AND((x � 20)c;

AND((5 � y � 15)c;

(5 � z � 15)c))

= (x � 20 ^ 5 � y � 15 ^ 5 � z � 15)c

where gc1 synchronizes yeart and yearm according to the

MIN synchronization rule, and gc2 synchronizes photo,

smith and family, which are to terminate simultane-

ously.

The obtained PND is translated into its correspond-

ing TAD shown in �g. 10. We use the synthesis algo-

rithm to construct a scheduler that guarantees that the

state done is eventually reached from the state ready.

Notice that since there is no choice on the possible

controllable transitions, scheduling consists in appro-

priately choosing the delays of the controllable basic

start
xmast
xmasm

and
dummy1

photo photo
ready

photo

and
smiley

and
dummy2
family

yearm
family

yeart
smith
family

done

photo photo
photo

photo

fy; zg

fy; zg
(5 � y � 7)u

(4 � y � 10)c

fx; yg

truec

fyg

(y � 100)u

fzg

(z > 0)c

fzg

(3 � z � 4)u

fyg

gc2z > 0)c
(2 � y � 5 ^

(5 � y � 7)c

fyg

Figure 10. Greeting card specification trans-
lated into a TAD.

media according to the delays chosen by the environ-

ment for the uncontrollable ones. The synthesis algo-

rithm for 3done outputs the TAD shown in �g. 11.

The synthesized guards are written in bold.

ready

and
smiley

photo

done

start
xmast
xmasm

and
dummy1

photo
photo photo

and
dummy2
family

yearm
family

yeart
smith
family

photo photo
photo

fzgfzg

(3 � z � 4)u (x � 2 ^ y < 1 ^ z > 0)c

fy; zg
(5 � y � 7)u

fx; yg

truec

fyg

(y � 100)u

(x > 1 ^ 4 � y � 10)c

fy; zg

fyg fyg

z > 0)c
2 � y � 5^

(z � 5 ^ z+ 5 � x^

gc25 � y � 7)c
z+ 5 � x^
(z � 10^

Figure 11. Controller obtained by synthesis.

4.2 A system of three tasks

We consider here a system of three processes P 1, P 2

and P 3 sharing three non-preemptable resources R0,

R1 and R2, as described in [13]. P 1 is a periodic pro-

cess of period equal to 9 and deadline equal to 8. After

an initial jitter of at most 1, P 1 uses R0 for some time

between 2 and 3 and laterR0 and R1 for a time between

1 and 2. P 1 releases R0 between the two utilisations.

P 2 is an aperiodic process with a minimum inter-arrival

time of 10. It simultaneously uses resources R0 and R2

during a time ranging in [1; 2]. P 3 is an aperiodic pro-

cess with a minimum inter-arrival time of 6. It needs

both resources R1 and R2 simultaneously to execute in

a time ranging in [1; 2] (�gure 12).

We model this system as the PND shown in �g. 13.

We use three error places, named erri with i = 1; 2; 3,

which are reached when the respective deadlines cannot

be met. This means that unreachability of erri implies

[2; 3]

deadline = 8

minimum intertime = 10

R0; R2

P 2

P 3

R1; R2

[1; 2]

minimum intertime = 6

deadline = 6

Jitter R0 R0; R1

P 1

deadline = 8

[0; 1] [2; 3] [1; 2]

period = 9

Figure 12. A system with three tasks.

liveness of P i. The size of the corresponding TAD is

shown in table 2. The problem to be addressed con-

sists in �nding a scheduler that guarantees that every

process meets its deadline (i.e., 2:(err1_err2_err3)).

In [13], P 1 and P 2 are assumed to be mandatory

whereas P 3 is optional, i.e., can be rejected if the dead-

lines of the others are compromised. A scheduler is pro-

vided for the system composed of the two processes P 1

and P 2, but for the full system, no complete scheduler

is given.

We have synthesized deadlock-free2 schedulers for

the two cases. The scheduler for the full system con-

tains states from which the optional task P 3 is actually

scheduled. Table 2 shows the size of the scheduler and

the performances of the algorithm (on a UltraSparc 5).

4.3 A robotic arm

This case study is also taken from [13]. It is about

a robotic arm programmed to take objects from a con-

veyor belt, to store them in a bu�er shelf, and to put

them eventually into a basket. The arm is controlled

by �ve tasks sharing one CPU:

� A Trajectory Control (TC) is spawned every 16ms

to read commands from a shared bu�er P2 and is-

sue set-points to the low-level arm controller. This

task terminates immediately if there are no com-

mands to process, otherwise it has an execution

time between 5ms and 6ms. Its deadline is equal

to the period of 16ms.

� Two motion executers (ME), a lifter and a putter,

are invoked whenever the system must move an

2The fact that each cycle in the PND lasts a time strictly
greater than one guarantees non-zenoness.

item; each ME generates a set of command in the

command bu�er. The lifter is activated whenever

the system detects an object on the conveyor belt,

with a minimum intertime of 40ms between each

arrival. The lifter issues to the TC the commands

to get the object and to put it in the bu�er shelf

P1, and activates the putter. The putter sends to

the TC the commands to take the object from the

bu�er shelf and put it into the basket. Both ME

produce their commands within 4ms to 8ms.

� A Sensor Reader (SR) reads several sensors every

24ms. Its execution time is 1ms, and its deadline

is equal to the period. The results of the SR are

used by the TC.

� A Motion Planner (MP) re�nes the motion plan

for the MEs each time it can be run without com-

promising the safeness of the remaining tasks. The

MP tries to run once every 80ms and, if accepted,

produces a re�ned plan within 14ms.

The PND modeling the �ve tasks is depicted in �g-

ure 14. As in the previous example we use error places,

named erri with i 2 I = fLifter; Putter; TC; SRg, to

model deadline misses. Unreachability of erri implies

liveness of the corresponding task. We have omitted

these error places in the �gure to avoid making it more

complicated. For the same reason, we do not explicitly

represent the construction used to enforce the 1-safety

of the PND (in particular, of places P1 and P2). Com-

pared to [13], our model requires stronger synchroniza-

tion and imposes harder schedulability constraints as

the bu�er size can not exceed one.

The synthesis problem here consists in �nding a

scheduler that guarantees that no deadline is ever

missed (i.e., 2:
W

i2I erri). Notice that the worst case

CPU utilization factor (sum of the execution times di-

vided by the periods) for the mandatory tasks (TC,

Lifter, Putter, SR) is 0:817. This indicates that the

scheduling constraints are really tight.

Table 2 shows the size of the synthesized deadlock-

free scheduler2 which actually allows the optional task

MP to be scheduled in certain states.

Sys TAD Scheduler Perform

sta tra clk sta tra MB time

2-p 17 32 4 16 28 3 4s

3-p 46 126 6 42 105 37 10m

rob 349 1132 5 244 848 115 3h 20m

Table 2. Experimental results.

ft2g
(t2 � 10)u

Sleep1

(t1 = 9)u
ft1; x1g

ft3g
(t3 � 6)u

Jitter

W11

C11

W12

C12

(x1 � 1)u

R2

R0

R1

C2

W2

C3

W3
(2 � x1 � 3)u

err1

fx1g
(t1 � 3)c

fx1g
(t1 � 6)c

(t1 > 3)u

(t1 > 6)u

Sleep2

err3

P3

(t2 > 6)u

err2

Sleep3

P2

P1

(t3 > 4)u

(1 � x3 � 2)u

(1 � x1 � 2)u

fx3g
(t3 � 4)c

(1 � x3 � 2)u

fx2g
(t2 � 6)c

Figure 13. PND of the system with three tasks.

Lifter Putter

TC

SR

MP

(t1 � 40)u (t1 � 32)c

fxgft1g fxg

(4 � x � 8)u (4 � x � 8)u

ft3g

(t3 = 24)u

(t3 � 23)c

fxg

(x = 1)c

(t5 = 16)u

ft5g fxg

(t5 � 10)c x = 0 (5 � x � 6)u

x = 0

(t4 = 80)u

(x = 14)cfxgft4g

(t4 = 80)u

ft4g

P1

P2

CPU

Figure 14. PND of the robotic arm.

5 Discussion

We have presented a framework for automatic sched-

uler generation based on a synthesis algorithm, and il-

lustrated its applicability in practice to solve concrete

examples. We believe that the presented results are

a basis for automatic scheduler generation of reactive

applications that can be modeled as timed automata.

They are not in principle applicable to scheduling

with preemption, which requires models with integra-

tors [10]. Compared to classical scheduling techniques

(e.g. [12, 4]), our framework is applicable without any

assumptions about the structure of the application such

as periodicity or priorities of the tasks. Our algorithm

is optimal in the sense that if it does not �nd a sched-

uler, then such a scheduler does not exist.

A limitation is certainly the theoretical complex-

ity of the synthesis algorithm and of the generated

schedulers. However, this complexity is not observed

in the examples we have considered. We believe

that the method is tractable for non-trivial systems of

medium size. As the synthesized schedulers are max-

imal, that is, they contain all the schedules satisfy-

ing the given property, simpler deterministic schedulers

could be obtained by reducing non-determinism. An-

other way of avoiding state space explosion is to apply

a compositional approach. The use of synchronization

modes such as MAX and MIN, in addition to AND-

synchronization, drastically helps keeping the discrete

state complexity low. We are currently studying both

the possibility of de�ning direct composition rules and

reducing non-determinism.

Our work is based on [14, 3]. Controller synthe-

sis for timed automata has also been considered in [8],

where the problem is reduced to the untimed frame-

work of [17] using the region graph construction which

results in state-space explosion. [16] treats the problem

in the more general setting of linear hybrid automata,

gives a semi-decision procedure (the problem is gener-

ally undecidable for this class of systems) based also on

the symbolic �x-point algorithm of [14], and presents a

prototype implementation in the tool HyTech. Due to

the more general type of polyhedra used to represent

symbolic states for hybrid automata, the operations are

more costly.

The approach proposed in [11] is also similar to ours,

in the sense that it uses an automata-based formal-

ism (after translation from ACSR), but it relies on a

discrete-time semantic model and on a di�erent algo-

rithm based on the notion of weak bisimulation. As far

as we understand, it does not distinguish between con-

trollable and uncontrollable transitions. We believe,

however, that this distinction is fundamental to appro-

priately model the behavior of the environment.

A scheduler synthesis tool has also been described

in [15]. It di�ers from ours in two major aspects: (1) it

computes static cyclic schedules by sequencing events

in a �xed time frame, whereas our algorithm produces

dynamic (and not necessarily cyclic) schedules for an

unbounded time frame, and (2) it is restricted to de-

terministic execution times, while we can handle non-

deterministic ones.

To our knowledge, the Kronos prototype that we

have presented here is the �rst tool for controller syn-

thesis from timed automata.

References

[1] R. Alur and D.L. Dill. A theory of timed automata. TCS,

126, p. 183-235, 1994.

[2] K. Altisen. G�en�eration automatique d'ordonnancements

pour syst�emes temporis�es. DEA, ENSIMAG, 1998.

[3] E. Asarin, O. Maler, and A. Pnueli. Symbolic Controller

Synthesis for Discrete and Timed Systems. In Hybrid Sys-

tem II. LNCS 999, Springer, 1995.

[4] N. C. Audsley, A. Burns, M. F. Richardson, and A. J.

Wellings. Deadline Monotonic Scheduling. In 8th Real-time

Operating Systems and Software. IEEE, 1991.

[5] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in

timed systems. In COMPOS'97. LNCS 1536, 1998.

[6] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and

S. Yovine. Kronos: A model-checking tool for real-time

systems. In CAV'98. LNCS 1427, Springer-Verlag, 1998.

[7] G. G�o�ler. Mod�elisation et contrôle des syst�emes multim�e-

dia. DEA, ENSIMAG, 1998.

[8] G. Ho�mann and H. Wong Toi. The input-output control of

real-time discrete event systems. In 30th IEEE CDC, 1991.

[9] M. Jourdan, N. Laya��da, and L. Sabry-Ismail. Presentation

Services in madeus: an Authoring Environment for Inter-

active Multimedia Documents. RR-2983, INRIA, 1997.

[10] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Decidable

integration graphs Inf. and Comp., 159, p. 209{243, 1999.

[11] H. Kwak, I. Lee, A. Philippou, J. Choi and O. Sokolsky.

Symbolic schedulability analysis of real-time systems. In

IEEE RTSS'98, Madrid, Spain, Dec. 1998.

[12] C.L. Liu and J.W. Layland. Scheduling algorithms for mul-

tiprogramming in a hard-real-time environment. Journal of

the ACM, 20(1), 1973.

[13] M. Lusini and E. Vicario. Static analysis and dynamic steer-

ing of time-dependent systems using Petri Nets. Technical

Report # 28.98, University of Florence, 1998.

[14] O. Maler, A. Pnueli, and J. Sifakis. On the Synthesis of Dis-

crete Controllers for Timed Systems. In STACS'95. LNCS

900, Springer Verlag, 1995.

[15] A.K. Mok, D.C. Tsou and R.C.M. Rooij. The MSP.RTL

Real-Time Scheduler Synthesis Tool. In RTSS'96, Washing-

ton, D.C., USA, Dec. 1996. IEEE Computer Society Press.

[16] H. Wong Toi. The synthesis of controllers for linear hybrid

automata. In 36th IEEE CDC, p. 4607{4612, 1997.

[17] W. M. Wonham and P. J. Ramadge. On the supremal con-

trollable sublanguage of a given language. SIAM J. Control

and Optimization, 25(3):637{659, May 1987.

