
An Algebraic Framework for Urgency

S�ebastien Bornot and Joseph Sifakis

Sebastien.Bornot@imag.fr Joseph.Sifakis@imag.fr

Verimag, 2 rue Vignate, 38610 Gi�eres, France

1 Introduction

Timed formalisms are extensions of untimed ones by adding clocks, real-valued

variables that can be tested and modi�ed at transitions. Clocks measure the time

elapsed at states when some implicitly or explicitly given time progress conditions

are satis�ed. Timed automata, timed process algebras and timed Petri nets can

be considered as timed formalisms.

The semantics of timed formalisms can be de�ned by means of transition sys-

tems that perform time steps or (timeless) transitions. Clearly, such transition

systems must satisfy well-timedness requirements related with the possibility

for time to progress forever. It is recognized that the compositional description

of timed systems that satisfy even weak well-timedness requirements, is a non

trivial problem. An inherent di�culty is that usually, the semantics of operators

compose separately time steps and transitions by preserving urgency: time can

progress in a system by some amount if all its components respect their time

progress constraints. This leads to semantics based on a nice \orthogonality

principle" between time progress and discrete state changes. Parallel composi-

tion and other operators have been de�ned according to this principle, for timed

process algebras and hybrid automata. However, composing independently time

steps and transitions may easily introduce timelocks. It is questionable if the

application of a strong synchronization rule for time progress is always appro-

priate. For instance, if two systems are in states from which they will never

synchronize, it may be desirable not to further constrain time progress by the

strong synchronization rule.

In several papers ([SY96,BS98,BST97]) we have studied compositional de-

scription methods that are based on \exible" composition rules that relax ur-

gency constraints so as to preserve a weak well-timedness property that we call

time reactivity. The latter means that if no discrete transition can be executed

from a state then time can progress. Contrary to other stronger properties, time

reactivity is very easy to satisfy by relating directly time progress conditions and

enabling conditions of discrete transitions. We have proposed a simple sub-class

of timed automata, called timed automata with deadlines that are time reactive

and we have shown how can be de�ned choice and parallel composition opera-

tors that preserve time reactivity. In this paper, we present a uni�ed algebraic

framework that encompasses the already presented results and provides laws for

choice and parallel composition on timed systems, modulo strong bisimulation.

The algebraic framework is characterized by the following.

{ Timed systems are obtained as the composition of timed actions by using

operators. A timed action is a discrete transition, labeled with an action

name, a guard, a deadline and a jump. Guards and deadlines are predicates

on clocks characterizing respectively, the states at which the action is enabled

and the states at which the action becomes urgent (time progress stops). We

require that the deadline implies the corresponding guard which guarantees

time reactivity. The jumps are functions that specify clock assignments when

the action is executed.

{ The operators are timed extensions of untimed operators. They preserve

both time reactivity and activity of components. The latter is the property

meaning that if some action can be executed after waiting by some time in a

component, then some action of the composed system can be executed after

waiting by some (not necessarily the same) time.

We propose timed extensions of choice and parallel composition operators

that are associative and commutative and are related by an expansion the-

orem. Choice operators are parameterized by an order relation on actions

that is proven to be useful, in particular to de�ne parallel composition with

maximal progress.

{ In addition to the usual laws of untimed operators, timed operators satisfy

speci�c laws reecting the structure of timed actions and assumptions about

their synchronization. We identify di�erent synchronization modes that take

into account the possibility of waiting of the components and study their

properties.

The paper is organized as follows. Section 2 presents the basic model, which

is essentially automata with clocks, an abstraction of timed automata without

the usual restrictions on guards and assignments. Section 3 and section 4 present

respectively, basic results on priority choice operators and parallel composition,

such as associativity, activity preservation and the expansion theorem. Section

5 describes the algebraic framework. Two examples illustrating its use are given

in section 6. We conclude by discussing future work directions and relations to

existing work.

2 Timed Systems

De�nition 1. Timed systems

A Timed System is :

{ A discrete labeled transition system (S;!; A) where

� S is a discrete set of states

� A is a �nite vocabulary of actions

� !� S �A� S is a discrete transition relation

{ A dense set V of states isomorphic to Rn
+

{ A labeling function hmapping discrete transitions , elements of!, into timed

transitions : h(s; a; s0) = (s; (a; g; d; f); s0), where

� g, d are respectively the guard and the deadline of the transition. Guards

and deadlines are unary predicates on V such that d) g.
� f is a jump f : V ! V .

According to the above de�nition, a timed system can be obtained from an

untimed one by associating with each action a a timed action (a; g; d; f).

De�nition 2. Semantics of timed systems

A state of a timed system is a pair (s; v), where s 2 S is a discrete state and

v 2 V . We associate with a timed system a transition relation !� (S � V �
(A[R+)� (S�V). Transitions labeled by elements of A correspond to discrete

state changes while transitions labeled by non-negative reals correspond to time

steps .

Given s 2 S, if f(s; ai; si)gi2I is the set of all the discrete transitions issued

from s and h(s; ai; si) = (s; (ai; gi; di; fi); si) then :

{ 8i 2 I 8v 2 R+ : (s; v)
ai! (si; fi(v)) if gi(v) .

{ (s; v)
t
! (s; v + t) if 8t0 < t : cs(v + t0) where cs = :

W
i2I di and v + t is the

valuation obtained from v by increasing all the components of v by t.
We call cs the time progress condition associated with the discrete state s.

We consider timed systems such that for any state s the time progress condi-

tion cs is right-open. The semantics of a timed system is its associated transition

relation, modulo strong bisimulation [Par81,Mil83,Mil89].

Notice that the simplest timed system is a single transition labeled with the

timed action (a; g; d; f). The guard g characterizes the set of states from which

the timed transition is possible while the deadline d characterizes the subset of

these states where the timed transition is enforced by stopping time progress.

The relative position of d with respect to g determines the urgency of the action.

For a given g, the corresponding d may take two extreme values: d = g, meaning

that the action is eager , and d = false , meaning that the action is lazy . A

particularly interesting case is the one of a delayable action where d = g # is the
falling edge of a right-closed guard g (cannot be disabled without enforcing its

execution), de�ned by

g# (v) = g(v) ^ 9� > 0 : 8�0 2 (0; �] : :g(v + �0):

The above cases are illustrated in �gure 1.

The condition d) g guarantees that if time cannot progress at some state,

then some action is enabled from this state. Restriction to right-open time

progress conditions guarantees that deadlines can be reached by continuous time

trajectories and permits to avoid deadlock situations in the case of eager tran-

sitions. For instance, consider the case where d = g = x > 2, implying the time

progress condition x � 2, which is not right-open. Then, if x is initially 2, time

cannot progress by any delay t, according to de�nition 2 above. The guard g

is not satis�ed either. Thus, the system is deadlocked. The assumptions above

ensure the property of time reactivity , that is, time can progress at any state

unless some untimed transition is enabled.

eagerd = g

delayabled = g #

lazyd = false

g

Fig. 1. Using deadlines to specify urgency.

3 Choice Operators

3.1 Non-deterministic Choice

Branching from a state s of a timed system can be considered as a non-deterministic

choice operator between all the timed transitions issued from this state. The

resulting untimed transition relation is the union of the untimed transition rela-

tions of the combined timed transitions. The resulting time step relation is the in-

tersection of the time step relations of the combined timed transitions. We intro-

duce standard process algebra notation to represent timed systems [BK85,Mil83].

A discrete labeled transition system (S;!; A) can be represented as a set of

equations of the form s =
P

i2I ai:si where f(s; ai; si)gi2I is the set of all the

transitions issued from s 2 S and the right-hand sides of the equations are terms

p of the form,

p ::= Nil j s 2 S j a:p j p+ p

where Nil is a constant and a 2 A.

The semantics is de�ned, as usual, by the rules

a:p
a
! p

p1
a
! p1

0 implies p1 + p2
a
! p1

0 and p2 + p1
a
! p1

0

s =
P

i2I ai:si implies s
ai! si8i 2 I

As usual, we consider that + is an associative, commutative and idempotent

operator with Nil as neutral element. The term
P

i2I ai:si is taken to be Nil,

if I = ;.
We extend the algebraic notation to timed systems (S;A;!; V; h) by re-

placing untimed actions by the corresponding timed actions via the labeling h.

The timed extension of the term s =
P

i ai:si is represented by the equation

s =
P

i bi:si, where h(s; ai; si) = (s; bi; si) with bi of the form (ai; gi; di; fi).

De�nition 3. Observational equivalence

For two terms s1, s2 we say that they are observationally equivalent, if for any

valuation v 2 V , the states (s1; v) and (s2; v) are bisimilar.

As observational equivalence is de�ned in terms of bisimulation of transition

systems and admits no syntactical characterization, we prefer working with a

stronger equivalence which is behavioral congruence.

De�nition 4. Behavioral congruence

Behavioral congruence is the least congruence induced by the following rules

s1 + s2 = s2 + s1 commutativity

(s1 + s2) + s3 = s1 + (s2 + s3) associativity

s+ s = s idempotence

s+Nil = s neutralelement

b1 = b2 implies b1:s = b2:s

Clearly if two terms are behaviorally congruent, then they are observation-

ally equivalent.

Throughout this section, equality of timed terms is behavioral congruence.

3.2 Priority Choice

Motivation

It is often useful to consider that some priority is applied when from a given

state several timed actions are enabled. Intuitively, applying priority implies

preventing low priority actions from being executed when higher priority actions

are enabled. This amounts to taking the non-deterministic choice between the

considered actions by adequately restricting the guards of the actions with lower

priority.

Consider, for example, two timed transitions (s; (ai; gi; di; fi); si), for i =

1; 2, with a common source state s. If action a1 has lower priority than a2 in

the resulting timed system, the transition labeled by a2 does not change while

the transition labeled by a1 would be of the form (s; (a1; g
0
1; d

0
1; r1); s1), where

g01) g1 and d01 = d1 ^ g
0
1.

For untimed systems, g01 is usually taken to be g1 ^ :g2, which means that

whenever a1 and a2 are simultaneously enabled, a1 is disabled in the prioritized

choice. However, for timed systems other ways to de�ne g01 are possible. One

may want to prevent action a1 to be executed if it is established that a2 will be

eventually executed within a given delay. For this reason, we need the following

notations.

De�nition 5. Modal operators

Given a predicate p on V , we de�ne the modal operators 3k p (\eventually p

within k") and 3- k p (\once p since k"), for k 2 R+ [f1g.

3k p (v) if 9t 2 R+ 0 � t � k: p(v + t)

3- k p (v) if 9t 2 R+ 0 � t � k: 9v0 2 V: v = v0 + t ^ p(v0)

We write 3p and 3- p for 31 p and 3- 1 p, respectively, and 2p and 2- p for

:3:p and :3- :p, respectively.

Coming back to the previous example, we can take g01 = g1 ^ :3kg2 or even

g01 = g1 ^2:g2. In the former case, a1 gives priority up to a2 if a2 is eventually

enabled within k time units. In the latter case, a1 is enabled only if a2 is disabled

forever.

Notice that for classes of timed systems such as timed automata [AD94]

modalities can be eliminated to obtain predicates without quanti�ers. For ex-

ample, 3(1 � x � 2) is equivalent to x � 2. We shall be using in the sequel

guards and deadlines with modalities.

De�nition and Results

For timed systems, priorities between actions can be parameterized by the

time actions of lower priority leave precedence to actions of higher priority. This

motivates the following de�nition.

De�nition 6. Priority order

Consider the relation�� A�(R+[f1g)�A. We write a1 �k a2 for (a1; k; a2) 2�
and suppose that

{ �k is a partial order relation for all k 2 R+ [f1g
{ a1 �k a2 implies 8k0 < k: a1 �k0 a2
{ a1 �k a2 ^ a2 �l a3 implies a1 �k+l a3

Property : The relation a1 � a2 = 9k a1 �k a2 is an order relation.

Proof. � is antireexive and transitive by de�nition. It is antisymmetric : if

a1 �k a2 then for every k0 � k, a1 �k0 a2 and since �0 is antisymmetric,

a2 �0 a1 does not hold; this implies that for any k0 2 R+ [f1g, a2 �k0 a1 does

not hold. 2

De�nition 7. Binary priority choice

Let BI = fbigi2I and BJ = fbjgj2J denote sets of timed actions with bi =

(ai; gi; di; fi), for i 2 I [J . The operator b+ is a binary operator on timed system

de�ned by

(
P

i2I bi:si)b+(Pj2J bj :sj) = (
P

i2I(binBJ):si) + (
P

j2J (bjnBI):sj) with

binBJ = (ai; ginBJ ; dinBJ ; fi)

ginBJ = gi ^
V

(aj ;gj ;dj ;fj)2BJ ;ai�kaj
:3kgj

dinBJ = di ^ ginBJ = di ^
V

(aj ;gj ;dj;fj)2BJ ;ai�kaj
:3kgj

and the bjnBI 's are de�ned in a similar manner.

Notice that b+ preserves behavioral congruence in the sense that if s1 = s01
then s1b+s2 = s01 b+s2. This de�nition introduces b+ as a macronotation : any

term with priority choice can be expanded into a term with non-deterministic

choice (its meaning). The equality of terms with priority choice operators is the

behavioral congruence of their meanings.

From the above de�nition, it is clear that priority restrictions are applied

mutually with respect to actions that are not on the same side of the operatorb+.
Notice that if a1 �k a2 then in b1:s1 b+bs:s2 = b1nfb2g:s1 + b2nfb1g:s2 =

b1nfb2g:s1 + b2:s2, a1 is disabled if a2 will be enabled within k time units.

1 2 3 4 5 6 7 8 90

g1

g2

a1 �1 a2

a1 �1 a2

g1
0

g1
0

g1
0

a1 �0 a2

Fig. 2. The restricted guard g
0

1 for di�erent degrees of priority

Consider the guards g1, g2 of the actions a1; a2. Figure 2 gives the guard

g01 = g1nfb2g obtained when g1 is restricted by considering the priority orders

a1 �0 a2, a1 �1 a2, a1 �1 a2.

For bi = (ai; gi; di; fi), i = 1; 2, two timed actions, we write b1 = b2 if a1 = a2,

g1 = g2, d1 = d2 and f1 = f2.

Lemma 8. For a timed action b and sets of timed actions B, B1, B2,

bnfbg [B = bnB
(bnB1)nB2 = bn(B1 [B2)

Proof. Let b = (a; g; d; f).

The �rst property results from the fact that priority orders are antireexive.

bnfbg [B = (a; gnfbg [B; dnfbg [B; f)

with
gnfbg [B = g ^

V
(ai;gi;di;fi)2fbg[B; a�kai

:3kgi

= g ^
V

(ai;gi;di;fi)2B; a�kai
:3kgi

= gnB

and

dnfbg [B = d ^ gnfbg [B = d ^ gnB = dnB

That is, bnfbg [B = bnB.

For the second property , we have by direct application of de�nition 5 :

(bnB1)nB2 = (a; gnB1; dnB1; f)nB2 = (a; (gnB1)nB2; (dnB1)nB2; f)

Let us compute (gnB1)nB2 :

(gnB1)nB2 = (g ^
V

(ai;gi;di;fi)2B1; a�kai
:3kgi)nB2

= (g ^
V

(ai;gi;di;fi)2B1; a�kai
:3kgi)

^
V

(ai;gi;di;fi)2B2; a�kai
:3kgi

= g ^
V

(ai;gi;di;fi)2B1[B2; a�kai
:3kgi

= gn(B1 [B2)

This implies

(dnB1)nB2 = (d ^ gnB1)nB2 = (d ^ gnB1) ^ (gnB1)nB2

= d ^ gn(B1 [B2) = dn(B1 [B2)

2

It will be shown that the operator b+ is commutative and Nil is the neutral

element. However, it is important to notice that b+ is not distributive with respect

to + :

(b1:s1 + b2:s2)b+b3:s3 6= (b1:s1b+b3:s3) + (b2:s2 b+b3:s3) equivalent to
b1nfb3g:s1+ b2nfb3g:s2 + b3nfb1; b2g:s3 6=

b1nfb3g:s1 + b3nfb1g:s3 + b2nfb3g:s2 + b3nfb2g:s3

In fact, if a3 (the label of b3) is the action with the lowest priority then in (b1:s1+

b2:s2)b+b3:s3, b3 is restricted jointly by both b1 and b2 , while in (b1:s1 b+b3:s3) +
(b2:s2 b+b3:s3), b3 is restricted separately by b1 and b2.

However , b+ is associative as it will be shown in proposition 10. Associativity

is an important property which is satis�ed due to the adequate de�nition of

priority orders. In particular, the transitivity property is crucial for achieving

associativity, as it is shown by the following example.

Example 9. Consider the timed terms p = (b1:p1b+b2:p2)b+b3:p3 and
q = b1:p1b+(b2:p2 b+b3:p3) with bi = (ai; gi; di; fi), i = 1; 2; 3. Suppose that a1 �10

a2 and a2 �10 a3 and that a1 �d a3 for some d 2 R+.

Then p and q are respectively equivalent to

p = (b1nfb2g)nfb3g:s1 + b2nfb3g:s2 + b3:s3
q = b1nfb2nfb3g; b3g:s1 + b2nfb3g:s2 + b3:s3

For b+ to be associative, the guard g01 of (b1nfb2g)nfb3g, g
0
1 = g1^:310g2^:3dg3,

and the guard g001 of b1nfb2nfb3g; b3g, g
00
1 = g1^:310(g2^:310g3)^:3dg3 must

be equivalent.

Clearly g01) g001 . Suppose that g
00
1 is true at some valuation v and that d < 20.

In that case, it is possible that :310(g2 ^ :310g3)(v) while 310g2(v), as it is

shown in �gure 3. On the contrary, if d � 20 (the transitivity axiom is satis�ed)

then :3dg3 implies that :310(g2 ^ :310g3) is equivalent to :310g2.

v v + 10

v + t

v + 20v + d

:g3

g3

:g2
� 10

Fig. 3. Case d < 20

Proposition 10. The binary priority operator is associative i.e., for timed ac-

tions bi = (ai; gi; di; fi),

((
P

i2I bi:si)b+(Pj2J bj :sj)) b+(Pk2K bk:sk) =

(
P

i2I bi:si)b+((Pj2J bj :sj)b+(Pk2K bk:sk)

Proof. We denote by BI , BJ and BK respectively the three sets fbigi2I , fbjgj2J
and fbkgk2K . We have to show the three following equalities :

8i 2 I: (binBJ)nBK = bin(fbjnBKgj2J [fbknBJgk2K)
8j 2 J: (bjnBI)nBK = (bjnBK)nBI

8k 2 K: bkn(fbinBJgi2I [fbjnBIgj2J) = (bknBJ)nBI

Due to the lemma this is equivalent to

8i 2 I: bin(BJ [BK) = bin(fbjnBKgj2J [fbknBJgk2K)
8k 2 K: bkn(BJ [BI) = bkn(fbjnBIgj2J [fbinBJgi2I)

It is then su�cient to show that :

8i 2 I: gin(BJ [BK) = gin(fbjnBKgj2J [fbknBJgk2K)

By de�nition of gnB, this equality can be reduced to

V
j2J; ai�lij

aj
:3lij (gjnBK) ^

V
k2K; ai�lik

ak
:3lik(gknBJ)

=
V
j2J; ai�lij

aj
:3lijgj ^

V
k2K; ai�lik

ak
:3likgk

for every i in I .

For a given i, we will now prove this by induction on the cardinality of J[K.

{ The case card(J [K) = 1 is trivial and left to the reader.
{ Let us suppose that the property holds for all J 0 and K 0 such that card(J 0 [
K 0) = n,

V
j2J0; ai�lij

aj
:3lij (gjnBK0) ^

V
k2K0; ai�lik

ak
:3lik(gknBJ0)

=
V
j2J0; ai�lij

aj
:3lijgj ^

V
k2K0; ai�lik

ak
:3likgk:

We will now show that this holds for all J and K such that card(J [K) =

n+ 1.
Let a be an action of least priority in J [K :

8j 2 J [K; :(aj � a)

If a has no priority over ai, then the property to prove is identical to the

assumption. Let us suppose that a has priority over ai, and (without loss of

generality) that it appears in J : a = aj0 . The property to be shown is then

(:3lij0
gj0nBK) ^

V
j2(Jnfj0g); ai�lij

aj
:3lij (gjnBK)

^
V
k2K; ai�lik

ak
:3lik(gknBJ)

= :3lij0
gj0 ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj ^

V
k2K; ai�lik

ak
:3likgk:

Since aj0 has the least priority in J [K, we know that :

8k 2 K: gknBJ = gkn(BJnfbj0g)

We can use the induction hypothesis on (Jnfj0g) [K :

(:3lij0
gj0nBK) ^

V
j2(Jnfj0g); ai�lij

aj
:3lij (gjnBK)

^
V
k2K; ai�lik

ak
:3lik(gkn(BJnfbj0g))

= (:3lij0
gj0nBK) ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj ^

V
k2K; ai�lik

ak
:3likgk:

Since 3k is distributive with respect to disjunction and since 3l3kg =

3l+kg, we have :V
k2K; ai�lik

ak
:3likgk =

V
k2K; ai�lik

ak
:3lij0

3lj0k
gk

= :3lij0

W
k2K; ai�lik

ak
3lj0k

gk

= :3lij0

W
k2K; aj0�lij0

ak
3lj0k

gk

Let us take G =
W

k2K; aj0�lij0
ak
3lj0k

gk. Then, the following holds :

(:3lij0
gj0nBK) ^

V
j2(Jnfj0g); ai�lij

aj
:3lij (gjnBK)

^
V

k2K; ai�lik
ak
:3lik(gkn(BJnfbj0g))

= (:3lij0
(gj0 ^ :G)) ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj ^ :3lij0

G

= (:3lij0
((gj0 ^ :G) _G)) ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj

= (:3lij0
(gj0 _G)) ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj

= (:3lij0
gj0) ^ :3lij0

G ^
V
j2(Jnfj0g); ai�lij

aj
:3lijgj

= :3lij0
gj0 ^

V
j2(Jnfj0g); ai�lij

aj
:3lijgj ^

V
k2K; ai�lik

ak
:3likgk

QED.

2

The above proposition allows the de�nition of a n-ary priority choice opera-

tor. We denote bycPi2Ibi:si the term obtained by combining the terms fbi:sigi2I
by means of b+.
Proposition 11. The priority choice operator b+ is commutative, idempotent

and Nil is the neutral element.

Proof. Directly from the de�nition, b+ is commutative and Nil is the neutral

element. It is trivial that pb+p = p for all term of the form p = b:s, for some

timed action b and some term s. By associativity of b+, this equality can be

generalized to all terms p, that is, b+ is idempotent. 2

Proposition 12. Reduction to non-deterministic choice

Priority choice can be expressed in terms of non-deterministic choice. For any

set of terms fbi:sigi2I with bi = (ai; gi; di; fi)

[

X
i2I

bi:si =
X
i2I

b0i:si

with b0i = (ai; g
0
i; d

0
i; fi), g

0
i = gi ^

V
ai�kaj

:3kgj and d0i = di ^ g0i. That is

b0i = binfbjgj2I .

Proof. Immediate by induction on I , with the help of the two previous propositions.2

This proposition shows the global e�ect of prioritization on the initial actions

of the terms of a priority choice operator by taking into account associativity

and commutativity. It implies that behavioral congruence of terms with priority

is preserved by associativity and commutativity of b+. Thus, it is a congruence

with respect to b+.
This result allows to consider b+ not only as a macronotation but also as a

basic operator.

De�nition 13. Priority congruence

Consider the language of terms obtained by replacing non-deterministic choice

by priority choice in the de�nition of paragraph 3.1. Priority congruence is the

least congruence induced by the following rules

s1b+s2 = s2b+s1 commutativity

(s1b+s2)b+s3 = s1 b+(s2 b+s3) associativity

sb+s = s idempotence

sb+Nil = s neutral element

b1 = b2 implies b1:s = b2:s

Proposition 14. If two terms are priority congruent then they are behaviorally

congruent.

Proof. Trivially follows from the fact that behavioral congruence is a congruence

with respect to b+. 2
Proposition 15. Activity preservation

If cP
i2I

bi:si = cP
i2I

b0i:si as in proposition 10, then the followings properties

hold between the guards gi of bi and the restricted guards g0i of b
0
i.

1. 3gi) 3(g0i _
W
ai�aj

g0j), for any i 2 I

2. 3
W
i2I gi = 3

W
i2I g

0
i

Proof. The proof of this property is a direct application of associativity of b+.
Let us consider a timed action b = (a; g; d; f) with in�nitely less priority than

all actions in I (8i 2 I: a �1 ai) and a maximal guard (g = true). The reduced

guard g0 of b in

b:sb+[X
i2I

bi:si

is g0 = truenfb0igi2I = truenfbigi2I , which can be written
V
i2I :3g

0
i =
V

i2I :3gi
and gives the equality.

The �rst property is obtained by considering only the actions aj having

priority over ai : 3(gi _
W
ai�aj

gj) = 3(g
0
i _
W
ai�aj

g0j). 2

The �rst property means that if action ai can occur in the non-prioritized

choice then either ai can occur in the prioritized choice or some action of higher

priority.

The second property simply says that cP preserves activity of components : if

some action can be executed in the non-prioritized choice then some action can

be executed in the prioritized choice and vice versa.

The results of this section show that non-deterministic choice is a special

case of priority choice when the priority order is empty. In this case, priority

congruence and behavioral congruence coincide. Priority choice is actually a

generalization of non-deterministic choice and for this reason we consider it as the

choice operator, in the sequel. This allows to describe behaviors parameterized

by a priority order.

4 Parallel Composition

In this section, we propose a general method for the de�nition of parallel com-

position operators for timed systems as an extension of parallel composition for

untimed systems.

4.1 Parallel composition of untimed systems

We consider that for parallel composition of untimed terms the following frame-

work is given.

{ The action vocabulary A is provided with an operator p such that (A; p) is

a commutative semi-group with a distinguished absorbing element ? 2 A.

Words of this monoid represent the action resulting from the synchronization

of their elements. The absorbing element ? means impossibility of synchro-

nization.
{ A parallel composition operator k on terms which is supposed to be associa-

tive, commutative, hasNil as neutral element and is de�ned by an expansion

rule of the form:

If p1 =
P

i2J ai:si and p2 =
P

j2J aj :sj then

p1 kp2 =
X
i2I0

ai:(si kp2) +
X
j2J0

aj :(sj kp1) +
X

(i;j)2I�J

aipaj :(si ksj) (�)

where I 0 and J 0 are subsets of I and J respectively.

The �rst two summands correspond to behaviors starting with interleaving

of actions. The sets of interleaving actions may be empty, depending on

the semantics of k. The third summand contains terms with synchronization

transitions where only terms such that aipaj 6= ? appear.

When such a parallel composition operator is used to compose sequential

systems, it is important to combine interleaving and synchronization so as to

satisfy two often conicting requirements:

{ activity preservation, that is, if in one of the components some action is

enabled, then in the product some action is enabled too.
{ maximal progress, that is, when in the product both synchronization and

interleaving transitions are enabled, synchronization is taken.

Clearly, it is easy to satisfy each requirement separately.

{ If all the actions interleave (I = I 0; J = J 0 in the expansion rule) then ac-

tivity is preserved. However, in this case to achieve maximal progress the

description language should provide with mechanisms for eliminating dy-

namically all the interleaving transitions that are systematically introduced.

This is the approach adopted in languages such as CCS [Mil89] where all the

actions interleave and a global restriction operator is often applied to prune

o� interleaving transitions.

{ Maximal progress can be easily achieved by not allowing interleaving of

actions that may synchronize. However, in this case there is an obvious risk of

deadlock when the synchronization actions do not match. This point of view

is adopted in languages such as CSP [Hoa85], where actions are partitioned

into two classes, synchronizing and interleaving actions.

We show that for timed systems a parallel composition operation can be

de�ned preserving process activity and maximal progress due to the possibility

of controlling waiting times by means of priority choice operators.

4.2 Parallel composition of timed systems

We extend the parallel composition operatork to timed systems in the following

manner:

extension of p We assume that the operator p can be extended componentwise

on the set B of timed actions b of the form (a; g; d; f) where a 2 A, in

such a manner that (B; p) is a commutative semi-group with a distinguished

absorbing element ?. We take (?; g; d; f) = ? for any g, d, and f .

As ambiguity is resolved by the context, and to simplify notation, we overload

the notation for p and ?.
extension of the priority order If � is a priority order on A we suppose that

it is preserved by p

8a1; a2; a3 2 A : a1 �k a2 implies a1pa3 �k a2pa3

extension of k The parallel composition operatork for timed systems is de�ned

by extending the expansion rule (�) to timed terms, where bi is the timed

action associated with ai.

If p1 =
[

X
i2I

bi:si and p2 =
[

X
j2J

bj :sj then

p1 kp2 =
[

X
i2I0

bi:(si kp2) b+[
X
j2J0

bj :(p1 ksj) b+\
X

(i;j)2I�J

bipbj :(si ksj)

Proposition 16. For priority congruence, the parallel composition operator k
de�ned above is associative, commutative, distributive with respect to b+ and has

Nil as neutral element.

Proof. The proof is standard and similar to the one given in [Mil83] as priority

congruence satis�es the same axioms as the strong congruence. It is based on

the uniqueness of solution of well-guarded equations and on properties of b+. 2
Proposition 17. If all the actions interleave then k preserves activity. That is,

if gi are the guards of bi, i 2 I [J , in the expansion rule, g0i are the restricted

guards of the interleaving actions, i 2 I [J and gij are the guards of bipbj,

(i; j) 2 I � J , then

3gi) 3(g0i _
W
j2J gi; j)

3(
W
i2I gi _

W
j2J gj) = 3(

W
i2I g

0
i _
W

j2J g
0
j _
W
i;j2I�J gij)

Proof. If in the expansion rule priority choice is replaced by non-deterministic

choice, activity is trivially preserved due to the presence of interleaving actions.

Proposition 15 says that replacing non-deterministic choice by priority choice

preserves activity. 2

This proposition is a local deadlockfreeness preservation. If some action is

possible in a component, then in the product, either this action can interleave

or it can participate to a synchronization.

To achieve maximal progress in the expansion rule, it is su�cient to consider

the priority order which gives in�nite priority to synchronizations :

8a1; a2 2 A : a1pa2 6= ? implies a1 �1 a1pa2 and a2 �1 a1pa2

Example 18. Consider b1:s1 k b2:s2 with bi = (ai; gi; di; id) such that b1pb2 =

(a1pa2; g1 ^ g2; (d1 _ d2) ^ g1 ^ g2; id) with a1pa2 = ?, g1 = d1 = (x = k1),

g2 = (y � k2) and d2 = (y = k2).

If a1 and a2 do not interleave, then b1:s1 k b2:s2 = (b1pb2)(s1 k s2). We have

maximal progress but if we start from states such that :3((x = k1)^ (y � k2)),

we have a deadlock (�gure 4b).

If actions a1 and a2 interleave and there is no priority between a1pa2 and

these actions, then activity is preserved but either of the interleaving actions

can be taken when synchronization is possible (�gure 4c).

Finally, if actions a1 and a2 interleave and a1 �1 a1pa2, a2 �1 a1pa2 then ac-

tivity is preserved due to proposition 17. Furthermore, we have maximal progress

because the guards of the interleaving actions are respectively g1 ^ :3(g1 ^ g2)

and g2 ^ :3(g1 ^ g2), which means that they can be taken only if the synchro-

nization is disabled forever.

5 The Algebraic Framework

In this section we develop an algebraic framework for the speci�cation of timed

systems which takes into account the structure of timed actions. We study a

simple algebra for the composition of timed actions and deduce two classes of

laws for terms. The �rst class contains laws modulo priority congruence, resulting

from the properties of priority choice and the de�nition of parallel composition

operators. The second class contains laws reecting properties of timed actions

and preserving observational equivalence.

s01 s02

s2s1

s01 k s02

s1 k s2

s01 k s02 s01 k s02
a1 a1a2 a2

y � k2

x = k1
y = k2

a1pa2

y � k2 ^ x > k1

y = k2 ^ x > k1

x = k1 ^ y > k2

x = k1 ^ y > k2

a. The components b. No interleaving

c. Interleaving without priorities d. Interleaving and priorities

x = k1

x = k1

x = k1

a1

y � k2

y = k2

a2

a1pa2 a1pa2

x = k1 ^ y � k2

s1 k s2 s1 k s2

x = k1 ^ y � k2

x = k1 ^ y � k2

x = k1 ^ y � k2 x = k1 ^ y � k2

x = k1 ^ y � k2

Fig. 4. Parallel composition

5.1 Composition of Guards and Deadlines

We show how the commutative semi-group (B; p) can be de�ned. We assume that

the composition of timed actions bi = (ai; gi; di; fi); i = 1; 2, is a timed action of

the form b1pb2 = (a1pa2; g1pg2; d1pd2; f1pf2).

The de�nition of f1pf2 does not pose particular problems. An associative and

commutative operator p can be de�ned on jumps (consider for instance, the easy

case where synchronizing actions transform disjoint state spaces).

We suppose that the guard g1pg2 is de�ned as a monotonic function of g1
and g2 called synchronization mode, of the general form

g1pg2 = (g1 ^m(g2)) _ (m(g1) ^ g2)

where m is a function such that:

{ 8g : g) m(g)
{ 8g; g0 : m(g _ g0) = m(g) _m(g0)
{ 8g; g0 : m(gpg0) = m(g) ^m(g0)

Proposition 19. For guards (state predicates) g1, g2 and p synchronization

mode,

g1pg2 = g2pg1
(g1pg2)pg3 = g1p(g2pg3)

(g1 _ g2)pg3 = (g1pg3) _ (g2pg3)

g1 ^ g2) g1pg2) g1 _ g2

Proof. Commutativity of p follows directly from its de�nition.

Associativity is a simple application of the de�nition and the properties of m :

(g1pg2)pg3 = (m(g1pg2) ^ g3 _ (g1pg2) ^m(g3)

= m(g1) ^m(g2) ^ g3 _m(g1) ^ g2 ^m(g3) _ g1 ^m(g2) ^m(g3)

Due to commutativity of p, this is equal to g1p(g2pg3), too.

Distributivity with respect to disjunction is rather simple too :

(g1 _ g2)pg3 = m(g1 _ g2) ^ g3 _ (g1 _ g2) ^m(g3)

= (m(g1) _m(g2)) ^ g3 _ g1 ^m(g3) _ g2 ^m(g3)

= (m(g1) ^ g3 _ g1 ^m(g3)) _ (m(g2) ^ g3 _ g2 ^m(g3))

= (g1pg3) _ (g2pg3)

The last property is derived from g1) m(g1) and g2) m(g2), knowing that

g1pg2 = m(g1) ^ g2 _ g1 ^m(g2) :

g1 ^ g2 _ g1 ^ g2) g1pg2

Moreover g1 ^m(g2)) g1 and g2 ^m(g1)) g2 imply :

g1pg2) g1 _ g2

2

The above properties imply that synchronization may occur only if at least

one of the synchronizing actions is enabled. Furthermore, if both synchronizing

actions are enabled at a state then synchronization is enabled. Distributivity of

the composition of guards with respect to disjunction is an important property

as parallel composition distributes over choice operator. More precisely, if S0 is

the system S where we replace a transition s
(a;g;d;f)
! s0 by the two transitions

s
(a;g1;d1;f)

! s0 and s
(a;g2;d2;f)

! s0 such that g = g1 _ g2 et d = d1 _ d2 we

would like that the parallel composition of S and S0 with another system yields

observationally equivalent systems.

In previous papers [BST97] we use the following synchronization modes for

their practical interest:

{ and-synchronization when g1pg2 = g1and g2 = g1 ^ g2.
{ max-synchronization when g1pg2 = g1max g2 = (3- g1 ^ g2) _ (g1 ^3- g2).
This condition characterizes synchronization with waiting.

{ min-synchronization when g1pg2 = g1min g2 = (3g1 ^ g2) _ (g1 ^ 3g2).
This condition characterizes synchronization by interrupt, in the sense that

synchronization occurs when one of the two actions is enabled provided that

the other will be enabled in the future.
{ or-synchronization when g1pg2 = g1or g2 = g1 _ g2

It is trivial to check that the above functions are indeed synchronization modes.

For a given synchronization guard g1pg2, the associated deadline d1pd2 must

be such that d1pd2) g1pg2, to preserve time reactivity. On the other hand, it is

desirable to preserve urgency which means d1pd2) d1_d2. For maximal urgency

and time reactivity we take d1pd2 = (g1pg2) ^ (d1 _ d2).

5.2 Laws for Extended Guards

We call extended guard any pair of predicates G = (g; d) such that d) g. We

extend the equivalence on predicates to equivalence on extended guards : if g1 is

equivalent to g2 (noted g1 = g2) and d1 is equivalent to d2 (noted d1 = d2) then

(g1; d1) is equivalent to (g2; d2) (noted (g1; d1) = (g2; d2)).

IfGi = (gi; di), for i = 1; 2, are two extended guards and p is a synchronization

mode, we take G1pG2 = (g1pg2; g1pg2 ^ (d1 _ d2)).

Proposition 20. If g1pg2 = (g1 ^m(g2)) _ (m(g1) ^ g2) and Gi = (gi; di), for

i = 1; 2, then G1pG2 = (g1pg2; (d1 ^m(g2)) _ (m(g1) ^ d2)) .

Proof. By de�nition, G1pG2 = (g1pg2; (g1pg2) ^ (d1 _ d2). Let us compute the

deadline :

(g1pg2) ^ (d1 _ d2) = (m(g1) ^ g2 _ g1 ^m(g2)) ^ (d1 _ d2)

Since d1) g1) m(g1), this can be reduced to :

(g1pg2) ^ (d1 _ d2) = d1 ^ g2 _ d1 ^m(g2) _m(g1) ^ d2 _ g1 ^ d2
= d1 ^m(g2) _m(g1) ^ d2

2

This proposition says that the deadline of the synchronization guard has

the same form as the synchronization guard. The following are useful laws that

follow as a direct application of the proposition for Gi = (gi; di), i = 1; 2.

G1and G2 = (g1 ^ g2; d1 ^ g2 _ g1 ^ d2)

G1or G2 = (g1 _ g2; d1 _ d2)

G1max G2 = (g1max g2; (d1 ^3- g2) _ (3- g1 ^ g2))
G1min G2 = (g1min g2; (d1 ^3g2) _ (3g1 ^ g2))

Proposition 21. For extended guards Gi = (gi; di), i = 1; 2; 3, and p a synchro-

nization mode, the following laws hold

(G1pG2) = (G2pG1)

(G1pG2)pG3 = G1p(G2pG3)

(G1or G2)pG3 = (G1pG3)or (G2pG3)

Proof. Due to the previous proposition, (G1pG2) = (G2pG1) is trivial.

Let us prove associativity. Remember that by de�nition ofm,m(g1pg2) = m(g1)^
m(g2). This implies :

(G1pG2)pG3 = ((g1pg2);m(g1) ^ d2 _ d1 ^m(g2))p(g3; d3)

= ((g1pg2)pg3;m(g1pg2) ^ d3_
(m(g1) ^ d2 _ d1 ^m(g2)) ^m(g3))

= ((g1pg2)pg3;m(g1) ^m(g2) ^ d3
_m(g1) ^ d2 ^m(g3) _ d1 ^m(g2) ^m(g3))

As the operator p is associative on guards, this is equal to G1p(G2pG3) too.

The last equality is derived from the de�nitions :

(G1or G2)pG3 = (g1 _ g2; d1 _ d2)p(g3; d3)

= ((g1 _ g2)pg3;m(g1 _ g2) ^ d3 _ (d1 _ d2) ^m(g3)

= ((g1pg3) _ (g2pg3);

m(g1) ^ d3 _m(g2) ^ d3 _ d1 ^m(g3) _ d2 ^m(g3)

= (g1pg3;m(g1) ^ d3 _ d1 ^m(g3))or

(g2pg3;m(g2) ^ d3 _ d2 ^m(g3))

= (G1pG3)or (G2pG3)

2

It is important to notice that any expression involving extended guards and

synchronization modes can be reduced to an equivalent extended guard.

5.3 Laws for Timed Actions

We naturally lift the structure of extended guards to timed actions b = (a;G; f).

For bi = (ai; Gi; fi); i = 1; 2, we take

{ (a1; G1; f1) = (a2; G2; f2) if a1 = a2, G1 = G2 and f1 = f2.

{ ? = (?; G; f)

Proposition 22. Let B be a set of timed actions on a vocabulary A as in para-

graph 4.2. (B; p) is a commutative semi-group with absorbing element ? where

b1pb2 = (a1pa2; G1pG2; f1pf2), for bi = (ai; Gi; fi), i = 1; 2, and p is a given

synchronization mode in G1pG2.

Proof. From the various de�nitions and from proposition 21, it follows that p

is associative and commutative on each component of the timed actions, so it

is commutative and associative on timed actions. Moreover, ? (action) is the

absorbing element on A, so ? (timed action) is the absorbing element on B. 2

The above proposition holds for a given synchronization mode. However,

it can be easily extended to allow composition of timed actions with di�erent

synchronization modes under the following conditions.

Suppose that a partial function � is given from A into the set of modes. If � is

de�ned for a 2 A, �(a) denotes the synchronization mode associated with a. We

require that actions with di�erent synchronization modes cannot synchronize,

that is, �(a1) 6= �(a2) implies a1pa2 = ?.
It is trivial to check that (B; p) with b1pb2 = (a1pa2; G1�(a1)G2; f1pf2) is a

commutative semi-group with ? as absorbing element. We consider in the sequel,

that parallel composition of timed systems is de�ned in terms of such a general

synchronization function.

5.4 Laws for Timed Systems

Proposition 23. The congruence induced by the following laws on timed sys-

tems on (B; p) is compatible with observational equivalence, i.e. if two terms are

congruent then they are observationally equivalent.

{ b+ is associative, commutative, idempotent, and Nil is the neutral element.

{ k is associative, commutative, distributive with respect to b+, and Nil is the

neutral element.

{ ?:s = Nil

{ if b1 = b2 then b1:s = b2:s.

{ (a;G1or G2; f):s = (a;G1; f):sb+(a;G2; f):s (which means that an action

can be split into two actions of same label and reset, and whose union of

guards is the initial guard)

{ if all actions interleave and b is such that bpbj = ? for any timed action bj
in B then

b:sb+[X
i2I

bi:si = bnfbigi2I :sb+[
X
i2I

bi:si

Proof. This proof can be separated into two parts. The �rst part consists in

checking that the rules are compatible with observational equivalence; this is

trivial and left to the reader. The second part consist in checking that the in-

duced congruence is compatible with observational equivalence, that is if t1 = t01

and t2 = t02, due to one of the rules, then t1 b+t2 and t1 k t2 are respectively

observationally equivalent to t01b+t02 and t01 k t
0
2. Using the fact that we consider

equivalences, we will only show that if t1 = t2, then for any timed system t, t1 b+t
is observationally equivalent to t2b+t and t1 k t is observationally equivalent to

t2 k t.

If t1 = t2 due to properties of b+ or k then this property holds (see properties

on section 3 and 4, respectively).

For, the rest of the rules, it is trivial to check that if t1 = t2 then for any t,

t1b+t is observationally equivalent to t2 b+t. It is also trivial to check that for any

s and t, ?:s k t is observationally equivalent to Nil k t (which is equal to t),

and if b1 = b2 then b1:s k t is observationally equivalent to b2:s k t. We will only

consider the last to cases.

Knowing that (a;G1or G2; f):s = (a;G1; f):sb+(a;G2; f):s, consider the term

(a;G1or G2; f):s k p with p = cP
i2I

bi:si and bi = (ai; Gi; fi), i 2 I . From

properties of parallel of parallel composition and choice operators we have

(a;G1or G2; f):s k p = (a;G1or G2; f):(s k p)b+cPi2I
bi:((a;G1or G2; f):s k si)b+cP

i2I
(a;G1or G2; f)pbi:(s k si)

= (a;G1; f):(s k p)b+(a;G2; f):(s k p)b+cP
i2I

bi:((a;G1or G2; f):s k si)b+cP
i2I

(apai; (G1or G2)pGi; f pfi):(s k si)

= (a;G1; f):(s k p)b+(a;G2; f):(s k p)b+cP
i2I

bi:((a;G1or G2; f):s k si)b+cP
i2I

(apai; (G1pGi)or (G2pGi); f pfi):(s k si)

= (a;G1; f):(s k p)b+(a;G2; f):(s k p)b+cP
i2I

bi:((a;G1or G2; f):s k si)b+cP
i2I

(apai; (G1pGi); f pfi):(s k si)b+cP
i2I

(apai; (G2pGi); f pfi):(s k si)

For ((a;G1; f):sb+(a;G2; f):s) k p we get the same terms with the di�erence that

in the second summand (a;G1or G2; f):s is replaced by (a;G1; f):sb+(a;G2; f):s.

The rest of the proof is standard and closely follows techniques given [Mil83]

proving uniqueness of the solution of well-guarded equations.

Suppose now that all action interleave and b does not synchronize (for any

bj 2 B, bpbj = ?). Consider the term (bnfbigi2I :sb+cPi2I
bi:si) k p with p =

cP
j2J

bj :sj . We have :

(bnfbigi2I :s b+cPi2I
bi:si) k p

= bnfbigi2I :(s k p)b+cPi2I
bi:(si k p)

b+cP
j2J

bj :((bnfbigi2I b+cPi2I
bi:si) k sj)

b+cP
j2J

(bnfbigi2I)pbj :(s k sj)b+cPi;j2I�J
(bipbj):(si k sj)

= b:(s k p)b+cP
i2I

bi:(si k p)b+cPj2J
bj :((bnfbigi2I b+cPi2I

bi:si) k sj)

b+cP
j2J

?:(s k sj)b+cPi;j2I�J
(bipbj):(si k sj)

For (bb+cP
i2I

bi:si) k p we get the same terms with the di�erence that in the

third summand bnfbigi2I :sb+cPi2I
bi:si is replaced by bb+cP

i2I
bi:si, and we can

conclude as in previous case. 2.

5.5 Typed Timed Actions

Given an extended guard G = (g; d), it can be decomposed into G = (g ^
:d; false)or (d; d). That is, any extended guard can be expressed as the dis-

junction of one lazy and one eager guard. This remark motivates the de�nition

of typed guards. If g is a guard, we write g� and g� to denote respectively,

g� = (g; false) and g� = (g; g).

Proposition 24. For � 2 f�; �g and a synchronization mode g1pg2 = g1 ^
m(g2) _m(g1) ^ g2,

{ g�1 pg�2 = (g1pg2)
�

{ g�1or g�2 = g�1or (g2 ^ :g1)
�

{ g�1pg
�
2 = (g1 ^m(g2))

�or (m(g1) ^ g2)
�

Proof. { Let us show that g�1 pg�2 = (g1pg2)
�, for � 2 f�; �g.

g�1pg
�
2 = (g1pg2;m(g1) ^ g2 _ g1 ^m(g2))

= (g1pg2; g1pg2) = (g1pg2)
�

g�1 pg�2 = (g1pg2;m(g1) ^ false _ false ^ g2)

= (g1pg2; false) = (g1pg2)
�

{ g�1or g�2 = (g1 _ g2; g1) = (g1; g1)or (g2 ^ :g1; false) = g�1or (g2 ^ :g1)
�

This provides a canonical decomposition for union (or) of typed guards.

{ By applying the de�nitions :

g�1pg
�
2 = (m(g1) ^ g2 _ g1 ^m(g2);m(g1) ^ false _ g1 ^m(g2))

= (m(g1) ^ g2; false)or (g1 ^m(g2); g1 ^m(g2))

= (g1 ^m(g2))
�or (m(g1) ^ g2)

�

2

A consequence of the above results is that any expression involving typed

guards and synchronization modes can be reduced to the disjunction of disjoint

eager and lazy guards.

It is often useful to de�ne a type of delayable guards denoted by �. We take

g� = g�or g #�, where g # is the falling edge of the guard g.

Proposition 25. Any expression involving delayable guards and the synchro-

nization modes and, max, min, or, can be reduced into the disjunction of de-

layable guards.
g�1and g�2 = (g1 ^ g2)

�

g�1max g�2 = (g1 ^3- g2)
�or (3- g1 ^ g2)

�

g�1min g�2 = (g1 ^3g2)
�or (3g1 ^ g2)

�

Proof. We will use the properties of the falling edge operator to prove this result.

Namely, (g1 ^ g2) #= g1 ^ g2 # _g1 # ^g2, (3- g) #= false and (3g) #) g #.

{ For and , we have m(g) = g. It follows that :

g�1and g�2 = (g1; g1 #)and (g2; g2 #)
= (g1 ^ g2; g1 ^ g2 # _g1 # ^g2)
= (g1 ^ g2; (g1 ^ g2) #)
= (g1 ^ g2)

�

{ For max , m(g) = 3- g.

g�1max g�2 = (g1; g1 #)max (g2; g2 #)
= (3- g1 ^ g2 _ g1 ^3- g2;3- g1 ^ g2 # _g1 # ^3- g2)
= (3- g1 ^ g2;3- g1 ^ g2 #)or (g1 ^3- g2; g1 # ^3- g2)
= (3- g1 ^ g2; (3- g1 ^ g2) #)or (g1 ^3- g2; (g1 ^3- g2) #)
= (3- g1 ^ g2)

�or (g1 ^3- g2)
�

{ For min , m(g) = 3g.

g�1min g�2 = (g1; g1 #)min (g2; g2 #)
= (3g1 ^ g2 _ g1 ^3g2;3g1 ^ g2 # _g1 # ^3g2)

From (3g1) #) g1 # and g2) 3g2, it follows that (3g1) # ^g2) g1 # ^3g2
and symmetrically (3g2) # ^g1) g2 # ^3g1. The previous equality can be

rewritten :

g�1min g�2 = (3g1 ^ g2 _ g1 ^3g2;
3g1 ^ g2 # _g1 # ^3g2 _ (3g1) # ^g2 _ g1 ^ (3g2) #)

= (3g1 ^ g2;3g1 ^ g2 # _(3g1) # ^g2)
or (g1 ^3g2; g1 # ^3g2 _ g1 ^ (3g2) #)

= (3g1 ^ g2)
�or (g1 ^3g2)

�

2

Using typed timed actions, drastically simpli�es the general model. Further-

more, the most commonly used type, in practice, is delayable.

6 Examples

We provide two examples illustrating the use of priority choice and synchroniza-

tion modes to compositionally specify systems. The �rst example shows how

priorities can be used to achieve mutual exclusion. The second illustrates the

compositional description of a tra�c light controller for tramways crossing by

using min and max synchronizations.

6.1 Mutual exclusion

Consider a family of cyclic processes sharing in mutual exclusion a common

resource. The i-th process has period Ti and goes successively through three

states wi (wait), ei (execute), si (sleep). We suppose that execution ei takes Ei

time units. A process is represented as a timed system with actions ai (awake),

pi (proceed), ri (release). Two clocks ti and xi are used respectively to enforce

the period and the execution time. In �gure 5 we represent two such processes.

The constant Di is taken Di = Ti �Ei.

We want to construct a scheduler guaranteeing mutual exclusion for execu-

tion. A classical solution consists in restricting the behavior of the processes

by a semaphore with two actions p and r by taking pipp 6= ?, ripr 6= ? and

�(pi) = �(p) = �(ri) = �(r) = and .

An equivalent solution can be obtained by simply assuming priorities be-

tween actions. Consider that pi �1 rj for any pair (i; j); i 6= j and take the

interleaving product of the processes. It can be shown that if mutual exclu-

sion is respected in the initial state, then it is preserved forever. Consider for

instance, the interleaving product of the processes 1 and 2 under this priority

restriction shown in �gure 6. It is easy to check that due to priorities, the action

p1 and p2 will never be enabled from states e1w2 and w1e2, respectively. Their

guards will be restricted to states for which 2:(x1 = E1) = x1 > E1 and

2:(x2 = E2) = x2 > E2 hold respectively. It is trivial to verify that for cor-

rectly initialized processes x1 � Ei at states wi, which implies that transitions

leading to states violating mutual exclusion will never be taken.

6.2 Tra�c light for tramway crossing

The light controlling the car tra�c in a crossroads is a cyclic timed process with

two states G (Green) and R (Red) and a clock y to enforce sojourn times dG
and dR, respectively, at G and R (�gure 7a).

We want to modify the light so as to control the tra�c of tramways. When

a tramway approaches the crossing, it sends a signal a0 after which the light

must be green within some interval [l1; u1]. This guarantees that the tramway

crosses without stopping. Then, the light remains green until the tramway exits

the crossing. Figure 7b represents a tramway as a process with states O (Out),

A (Approach), C (Cross). We assume the tramway exits the cross section within

time in the interval [l2; u2] since the beginning of the approach phase.

Process 1

a1

w1

e1

s1

(t1 = T1)
�

t1 := 0

p1

r1

(t1 � D1)
�

x1 := 0

(x1 = E1)
�

f

A semaphore

(true)� (true)�

r

b

p

t2 := 0

Process 2

(t2 � D2)
�

(x2 = E2)
�

a2

s2

e2

w2

p2

r2

(t2 = T2)
�

x2 := 0

Fig. 5. Mutual exclusion for two processes

e1e2

w1w2

s1s2

e1w2

s1w2

w1e2

w1s2

s1e2 e1s2

p1

r1

a1

p2

r2

a2

p1

p1

p2

p2 r1

r1

r2

r2

a2

a2

a1

a1

Fig. 6. Product of process 1 and 2

GR

b. A Tramway

a. Tra�c light

a0
2

a0
1

y := 0(y = dR)
�

y := 0 (y = dG)
�

(l2 � x � u2)
�

a2

O A C

x := 0 (l1 � x � u1)
�

a0 a1

Fig. 7. Tra�c light and Tramway

The modi�ed behavior of the light can be obtained as the parallel composition

of the tra�c light process and the tramway process by taking �(a1) = �(a01) =

min and �(a2) = �(a02) = max. The resulting timed controller handling one

tramway (at most) is given in �gure 8. It corresponds to the product of the two

timed systems under the assumption of maximal progress and that all the actions

interleave. The dashed transitions will never be taken due to higher priority of

synchronizations. The typed guards G1, G
0
1, G11 and G22 are the following:

G11 = (x � u1 ^ y = dR)
� _ (l1 � x � u1 ^ y � dR)

�

G22 = (l2 � x ^ y = dG)
� _ (l2 � x � u2 ^ dG � y)�

G1 = (l1 � x � u1 ^ y > dR)
�

G01 = (y = dR ^ x > u1)
� :

7 Discussion

The paper presents a framework for extending compositionally the description

of untimed systems to timed systems by preserving time reactivity and activity

of components. The adopted composition principle contrasts with the most com-

monly adopted which is based on strong synchronization for time progress and

implies preservation of components urgency. Preserving time reactivity requires

sometimes relaxing urgency constraints.

OR AR CR

OG AG CG

a0

x := 0

a0

a0
1

(y = dG)
�

y := 0

a1

y := 0

a0
2

(y = dR)
�

a0
2

(y = dG)
�

a1pa
0

1

a0
2

a2

(l1 � x � u1)
�

x := 0

y := 0

a2pa
0

2

G22

a1 G1

(false)�

G11a0
1

G0

1
y := 0

(false)�

y := 0

Fig. 8. Controller for a tramway

An important outcome of this work is that composition operators for un-

timed systems admit di�erent timed extensions due to the possibility of control-

ling waiting times and \predicting" the future. The use of modalities in guards

drastically increases concision in modeling and is crucial for compositionality. It

does not imply extra expressive power for simple classes of timed systems, such

as linear hybrid automata [ACH+95], where quanti�cation over time in guards

can be eliminated.

The de�nition of di�erent synchronization modes has been motivated by the

study of high level speci�cation languages for timed systems, such as Timed

Petri nets and their various extensions[SDdSS94,SDLdSS96,JLSIR97]. We have

shown that the proposed framework is a basis for the study of the underlying

semantics and composition techniques; if they are bounded then they can be

represented as timed systems with �nite control. Another outstanding fact is

that using max-synchronization and min-synchronization, in addition to and-

synchronization, drastically helps keeping the complexity of the corresponding

timed system low [BST97].

The results concerning the algebraic framework itself are very recent. We are

currently studying their application to the compositional generation of timed

models of real-time applications and in particular to scheduling.

8 Related Work

The problem of compositional description in languages with priorities has been

principally studied for process algebras. The �rst work is, to our knowledge

[BBK86], where is de�ned an untimed process algebra with a priority order on

its set of actions. Later, in several papers, Cleaveland and his colleagues show

the interest of priority for the speci�cation and the veri�cation of distributed un-

timed systems [CH90,CLNS96,CLN96,CLN98]. Our work is closer to the work by

Insup Lee and his colleagues, [BGL97,BACC+98] on the timed process algebra

ACSR. The latter is a timed algebra with priorities and mutual exclusion con-

straints with value passing communication and dynamic priorities. It has been

used for schedulability analysis of real-time systems. However, this work does

not tackle compositionality issues concerning both the associativity of priority

choice operators and property preservation. Another important di�erence is that

although our priority order is static, it allows anticipation which is essential for

achieving maximal progress for timed systems.

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid

systems. Theoretical Computer Science, 138:3{34, 1995.
[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183{235, 1994.
[BACC+98] H. Ben-Abdallah, J.-Y. Choi, D. Clarke, Y.S. Kim, I. Lee, and H.-L. Xie.

A process algebraic approach to the schedulability analisys of real-time

systems. Real-time Sytems, 15, pages 189{219, 1998.
[BBK86] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and de�ning equa-

tions for an interrupt mechanism in process algebra. Fundamenta Infor-

maticae IX (2), pages 127{168, 1986.
[BGL97] P. Bremond-Gregoire and I. Lee. A process algebra of communicating

shared resources with dense time and priorities. Theoretical Computer

Science, 189, 1997.
[BK85] J. A. Bergstra and J. W. Klop. Algebra of communicating processes with

abstraction. Theoretical Computer Science, 37(1):77{121, May 1985. Fun-

damental studies.

[BS98] S. Bornot and J. Sifakis. On the composition of hybrid systems. In

First International Workshop Hybrid Systems : Computation and Control

HSCC'98, pages 49{63, Berkeley, March 1998. Lecture Notes in Computer

Science 1386, Spinger-Verlag.

[BST97] S. Bornot, J. Sifakis, and S. Tripakis. Modeling urgency in timed sys-

tems. In International Symposium: Compositionality - The Signi�cant Dif-

ference, Malente (Holstein, Germany), September 1997. Lecture Notes in

Computer Science 1536, Springer Verlag.
[CH90] R. Cleaveland and M. Hennessy. Priorities in process algebra. Information

and Computation, 87(1/2), pages 58{77, 1990.
[CLN96] R. Cleaveland, G. Luttgen, and V. Natarajan. A process algebra with

distributed priorities. In U. Montanari and V. Sassone, editors, CONCUR

'96, pages 34{49. LNCS 1119, Springer-Verlag, August 1996.
[CLN98] R. Cleaveland, G. Luttgen, and V. Natarajan. A process algebra with

distributed priorities. Theoretical Computer Science, 195(2), pages 227{

258, March 1998.

[CLNS96] R. Cleaveland, G. Luttgen, V. Natarajan, and S. Sims. Modeling and veri-

fying distributed systems using priorities: A case study. Software Concepts

and Tools 17, pages 50{62, 1996.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[JLSIR97] M. Jourdan, N. Layaida, L. Sabry-Ismail, and C. Roisin. An integrated

authoring and presentation environment for interactive multimedia docu-

ments. In 4th Conference on Multimedia Modeling, Singapore, November

1997. World Scienti�c Publishing.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer

Science, 25:267{310, 1983.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Par81] D. Park. Concurrency and automata on in�nite sequences. In 5th GI

Conference, Berlin, 1981. LNCS 104, Springer.

[SDdSS94] P. S�enac, M. Diaz, and P. de Saqui-Sannes. Toward a formal speci�cation

of multimedia scenarios. Annals of telecomunications, 49(5-6):297{314,

1994.

[SDLdSS96] P. S�enac, M. Diaz, A. L�eger, and P. de Saqui-Sannes. Modeling logical and

temporal synchronization in hypermedia systems. In Journal on Selected

Areas in Communications, volume 14. IEEE, jan. 1996.

[SY96] J. Sifakis and S. Yovine. Compositional speci�cation of timed systems.

In 13th Annual Symposium on Theoretical Aspects of Computer Science,

STACS'96, pages 347{359, Grenoble, France, February 1996. Lecture Notes

in Computer Science 1046, Spinger-Verlag.

